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So now we get into the speculative
part of our course.
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Part 1: unexplored experimental
avenues
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Plausibility

We left the last lecture with the following:

@ Amsel et al. found that “perceptuomotor” and “event-related”
anomalies produced N400 in different parts of the brain.

o However, event-based and perceptuomotor-based anomalies are hard
to distinguish when plausibility-ratings are matched.

So maybe plausibility is not a “real” thing, only mismatches matter.
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Doch.

Event-relatedness vs. perceptuomotoricity — too fine-grained a distinction.

@ What we really want to measure: execution of higher-order affordance
knowledge (= plausibility)

(1) Bob cut a cake
a. with a knife. (typical/frequent, possible)
b. with a hammer. (distributionally similar to knife, impossible)
c. with floss. (atypical/dissimilar/infrequent, possible)
d. with a towel. (atypical/dissimilar/infrequent, impossible)
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(A note on possibility and
plausibility.)
The distinction is nitpicky, but here’s one definition for this purpose:
Possibility

The absolute ability of the listener to execute affordance knowledge in a
way that “converges” on an imagined event.

Plausibility

The relative effort in executing affordance knowledge in the context of a
possible event.

Plausibility is more interesting as it focuses on the “mechanics”, but we can
use possibility as a lever.
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So back to our paradigm.

(2) Bob cut a cake
a. with a knife. (typical/frequent, possible)
b. with a hammer. (distributionally similar to knife, impossible)
c. with floss. (atypical/dissimilar/infrequent, possible)
d. with a towel. (atypical/dissimilar/infrequent, impossible)

The problem with this: extremely difficult to come up with EEG or even
eyetrack-worthy balanced data sets.

Even Amsel et al. put in a lot of effort to come up with their stimuli — over
various senses/event relations.
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Just use thematic fit!

Instead of trying to carefully norm a balanced possibility data set:
@ We already have testing data for our distributional models: thematic
fit ratings!
@ Likert scale 1-7 averaged over 20-ish humans of event triples: (verb,
role, filler) = score.

@ The problem is:
e Some of them are normed for “commonness”’: “How common is it for

e The ones built by Greenberg, Demberg, and Sayeed were slightly more
neutral: “An X is something that is Y'd" — eliminate “first-order”
affordance knowledge bias.
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Just use thematic fit!

Proposal: collect ratings for an instrument data set.

(3) Rate from 1-7:
a. How common is it to use a knife to cut something? (probability-

biased)
b. A knife is something that you use to cut. (“equipoise”)
c. Can a knife be used to cut? (possibility-biased)

Then use these ratings for correlation studies both across computational

models and psycholinguistic measures.
Can use McRae instrument data via crowdsourcing for starters, 200-300

ratings.
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How do we use these ratings?

For psycholinguistic measures: possibly combine with highly-rated objects?

(4) a. Bob cut a cake with a knife
b. Bob cut a cake with a string
c. Bob cut a cake with a committee
d. Bob cut a budget with a knife

e. Bob cut a budget with a string
f.o...

Or even just try to do it without an object role.
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Cake with hammer
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How do we use these ratings?

Also, to evaluate computational models:

@ Ratings that contrast distributional and “plausibilistic” intuitions by
humans are in themselves valuable.
@ What are statistical models of semantics actually capturing?

e Difference between model correlations with probability-biased and
possibility-biased ratings = influence of non-distributional knowledge?

e Does improvement on one reflect improvement on another, or are we
just building smarter and smarter “abstract parrots”?
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Formal representation

But how do we capture those “plausibilistic” or affordance-based intuitions?

@ Generative Lexicon qualia structure seem to be a good place to put
them.

@ Problem is, which quale? (Constitutive, Formal, Telic, Agentive)

e Knives are for cutting (Telic Quale) but. ..

e Shape affords actions that don't fit GL qualia structures.
e E.g., hold them in a hand, throw them, insert them in knife block, etc.
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Part 2: multimodal approaches to
feature extraction
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If we need real-world data, from
where can we get it?

Start from the most obvious: image data.
@ So yes, image data is somewhat unambitious.

e Static, decontextualized.
o Are there any ways in which the distribution of this data may be
skewed?

@ On the other hand: it's nearly as abundant online as textual data.
There was always a motivation for doing this: grounding Al.

@ No matter how formal the semantics you use, you're going to need to
connect it to the real world.
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How to use image data?

@ Text-image link: what consitutes an image linked to a text? Same
document? Tweets? Human selection?
@ Actually using the image:

e Learn on labelled data — expensive, but you can get lots of image labels
off the internet.

e Learn on pixels — ideal, but computational intensive and with data
sparsity issues.
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Learning on labelled data

Multimodal Deep Learning. Silberer and Lapata [2014]:
@ Use feature-attribute norms from McRae et al. [2015].

@ 541 nouns with human-labelled attributes.
e Literally the whole “define chair’ exercise, basically.

@ 700K images from ImageNet [Deng et al., 2009] labelled with 636
visual attributes.

@ 2362 textual attributes extracted from Wikipedia.
@ “Stacked bimodal autoencoder” to learn both representations.

@ Long story short: autoencoder has highest correlation with human
ratings w.r.t. previous work.
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Learning on labelled data

Stacked bimodal autoencoder from Silberer and Lapata [2014]:
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Learning from pixels

A word2vec-style approach from Lazaridou et al. [2015]:
e Multimodal skip-gram model based on Mikolov et al. [2013a].
e Eval data: approx 12K semantic relatedness judgements (e.g. pickles
are related to hamburgers).
@ Text corpus: 800M-token Wikipedia dump.
@ Image corpus: 5100 visual representations derived from ImageNet.

Long story short:
@ Performs on human judgements within range or better than
competing systems.
@ Qutperforms basic skip-gram model in image labelling and retrieval

tasks.
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Learning from pixels

Lazaridou et al. [2015] model sketch:
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Sayeed, Zarcone

Part 3: concluding remarks
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Types of knowledge

Dividing up the knowledge problem:

Implicit world-knowledge

Latent knowledge about the world that can be induced from indirect
information sources (e.g. distributional characteristics of language).

Explicit world-knowledge

Knowledge about the world that is coded explicitly, deduced formally,
innate, learned by being told, etc.

@ Implicit world knowledge — somehow related to the “experiential” part
of extensional meaning?

o Explicit world knowledge — somehow related to the “cognitive” part of

intensional meaning?
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How far does distributional
semantics get us?

Quite far:

@ Can use it to characterize similarity — that's what all the word
embeddings craze is ultimately about.

e Similarities are great for many, many tasks.
@ Generalized event knowledge — works quite well, provided we have:

e a semantic space that is sufficiently well-structured/informative.
e some procedure for exploiting the structure of the space.
e some finer classification of events and entities.

That's explicit knowledge, but not a lot of explicit knowledge — fair enough.
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How far does distributional
semantics get us?

Not far enough:
@ Similarity, generalized event knowledge not enough to help us with
huge domains of interaction.

o Affordances, plausibility:
e People can “simulate” the “misuse” of unexpected objects.
e How would you replicate/model this behaviour “distributionally”?
o Very preliminary approach: augmentation with multimodal

distributional data.
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Maybe formal semantics can help?

Formalisms like Generative Lexicon, compositional approaches etc.

@ Ways to represent script knowledge, expectations.
@ Central problem: “turtles all the way down”.

e What is the empirical basis to justify the primitives of the formalism?

@ Nevertheless, it seems like we need some kind of formal structure to
characterize state change.
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The problem is very far from
“solved,” but there are lots of
opportunities for research.
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Questions and plenary discussion
(if there's time)
Otherwise: THANKS
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