Event Types in the Mind and in the Corpus

Alessandra Zarcone - IMS - Universität Stuttgart Alessandro Lenci - Università di Pisa

Verb 2010 - Pisa, 4-5 November 2010

Event Types (ETs)

Vendler's (1967) classification of predicates:

	[DYN]	[dur]	[RES]	
STA	-	+	-	to know, to be tall
ACT	+	+	-	to sing, to walk
ACC	+	+	+	to write a book, to walk to the fence
ACH	+	-	+	to stumble, to die

A crucial role in verb semantics: temporal constitution of the sentence

ET of a sentence

 ET of a sentence: result of a complex interaction between the verb and the sentence context (Verkuyl 1972)

- **ET polysemy** (Bertinetto, 1986; Lucchesi, 1971)
 - impugnare, "to hold"/"to get hold of"
 - indossare, "to wear"/"to put on"

ET coercion (Pustejovsky, 1995; Rothstein, 2004)
 Guests have been arriving for hours (ACH \$\simeq\$ ACT)

ETs in Experimental Studies

 Acquisition and behavioral studies: Antinucci and Miller (1976), Finocchiaro and Miceli (2002), Gennari and Poeppel (2002), Bonnotte (2008), Zarcone and Lenci (2010)

 Computational studies: Zarcone and Lenci (2008) and Im and Pustejovsky (2010)

 ETs: one fundamental principle of organization of the mental lexicon

Necessity of an interdisciplinary approach

ET in the Mind and in the Corpus

Goals:

1. Test the speakers' competence of ETs

- 2 Experiments on verb stimuli (IT-verbs, EN-verbs)
 - 2 Experiments on picture stimuli (IT-pics, EN-pics)

2. Compare the speakers' performance with results from corpus-based models

- MaxEnt
- ▶ NC

Competence of ETs: task

to stroll

Which of the following symbols best depicts the type of event described?

 Use of pictograms to depict ET classes (Bonotte 2008)

Competence of ETs: task

Which of the following symbols best depicts the type of event described?

Competence of ETs: design

	stimuli	language	materials
IT-verbs	verbs	IT	 96 trans. VPs (24 ACC, 24 ACH, 24 ACT, 24 STA) 42 intrans. VPs (21 ACH +21 ACT) = 138 VPs
EN-verbs	verbs	EN	 96 trans. VPs (24 ACC, 24 ACH, 24 ACT, 24 STA) 38 intrans. VPs (19 ACH +19 ACT) 10 "up verbs" (e.g. "drink up") 144 VPs
IT-pics			19 ACC, 40 ACH, 40 ACT, 12 STA
EN-pics			= 144 VPs IPNP (Bates et al. 2000)

Competence of ETs: design

	subjects	format
IT-verbs	20 every subject saw every item	web-based format
EN-verbs	24 16-22 subjects per item (mean 18)	crowdsourcing experiment
IT-pics	20 every subject saw every item	web-based format
EN-pics	42 10-16 subjects per item (mean 14)	crowdsourcing experiment

Competence of ETs: results

Binomial logistic regression analysis
 (correct answer ~ ET * valency * sem_class)
 (correct answer ~ ET)

Effect of ET (IT-verbs: p < 0.05; others p < 0.001)
 some ET classes are easier to identify than others

Effect of semantic class (p < 0.001)
 (e.g. movement, cognition, etc.)
 for some sem. classes ET are easier to identify than others

Competence of ETs: results

		α	accur.	ACC	ACH	ACT	STA
IT-verbs	all	0.43	0.63	0.75	0.65	0.61	0.48
	trans.		0.59		0.57	0.53	
	intr.		0.72		0.76	0.69	
EN-verbs	all	0.53	0.68	0.81	0.64	0.68	0.51
	trans.		0.64		0.60	0.64	
	intr.		0.78		0.73	0.82	
IT-pics		0.31	0.42	0.34	0.54	0.60	0.34
EN-pics		0.39	0.54	0.68	0.54	0.50	0.48

IT-V	ACC	ACH	ACT	STA	EN-V	ACC	ACH	ACT	STA
ACC	355	44	62	14	ACC	379	43	47	0
ACH	219	580	75	20	ACH	201	533	87	15
ACT	143	62	531	141	ACT	164	59	582	56
STA	73	32	138	224	STA	50	33	128	219

IT-P	ACC	ACH	ACT	STA	EN-P	ACC	ACH	ACT	STA
ACC	240	40	78	21	ACC	172	163	138	29
ACH	208	377	146	58	ACH	53	294	41	11
ACT	142	28	393	233	ACT	27	74	276	44
STA	45	39	67	86	STA	2	16	96	79

Item-wise analysis

Items with lower accuracy \$\displayses polysemous items (multiple ET interpretations):

- ▶ IT-verbs: *formare una fila*, "to form a queue" (ACT/STA)
- IT-verbs: scegliere il disco, "to choose the recorder" (ACC/ ACH)

14

- EN-verbs: conceive the theory (ACC/ACH)
- EN-verbs: *tumble* (ACH/ACT iterative)

One picture, more ETs?

"up" verbs

and the second se	
the state of the state	
and the second second	
second second spinster and	

		base v	ersion	"up" v	ersion
	item	[+res]	[-RES]	[+RES]	[-RES]
	draw [up] the map	9	8	14	4
	dry [up] the cutlery	17	0	19	0
[+RES]	lock [up] the box	14	3	18	1
r.veot	swallow [up] the syrup	13	5	15	3
	tear [up] the table cloth	16	0	17	0
	wake [up] the doorman	17	1	18	1
	TOT	83%	17%	92%	8%
	beat [up] the wife	16	2	17	2
L-RES]	eat [up] the strawberries	6	11	16	2
L-VEOT	use [up] the materials	10	7	13	4
	wait [up] for the verdict	19	0	18	0
	TOT	72%	28%	89%	11%

Corpus-based models of ETs

 Computational models of ET classification trained with linguistically motivated distributional features (Distributional semantic approach, distributional hypothesis, Harris 1954)

Main ideas:

 each verb = distributional vector of co-occurrence frequencies with a number of contextual features
 <u>from distributional features to semantic features</u>: two verbs with similar context feature distributions = similar ET features

Corpus-based models of ETs

model	type	dataset
MaxEnt (Zarcone and Lenci 2008)	supervised learning	feature extracted for 3129 occurrences of 28 verbs from the Italian Syntactic-Semantic Treebank (Montemagni et al. 2003) 1 vector = 1 verb (token)
NC	nearest centroid method	distributional features vectors extracted from a state-of-the-art dependency corpus of Italian (la Repubblica, Baroni et al., 2004, Bosco et al., 2009) ->138 verbs from IT-VERBS 1 vector = 1 verb (lemma)

Nearest centroid method

- given verb x, we sum the other (non-x) verb vectors for the ET categories, forming 4 *centroids*
- we compute the cosine distance between x and each of the 4 ET centroids

18

for x, we choose the ET category with the maximum cosine

	ically-motivated itional features	
adverbial features	 -temporal adverbs (e.g. in X time, for X time) -intentional adverbs (e.g. deliberately) -frequency adverbs (e.g. rarely, often) -iterative adverbs (e.g. X times) 	
morphological features	-present tense -imperfect tense -future tense -simple past -perfect tenses -progressive periphrasis	
argument structure	 -absence of arguments besides the subj. -presence of direct object, indirect obj. -presence of indirect obj. -presence of a locative argument -presence of a complement sentence -passive diatesis -number, animacy and definiteness of subj. and direct obj. 	

Corpus-based models vs. behavioral studies

		ACC	ACH	ACT	STA	baseline
IT-verbs	0.63	0.76	0.66	0.61	0.48	
EN-verbs	0.68	0.81	0.66	0.72	0.51	
MaxEnt	0.85	0.89	0.90	0.74	0.78	0.80
NC	0.51	0.58	0.45	0.48	0.58	0.32

 MaxEnt baseline: to every verb occurrence the most frequent ET of the lemma
 NC baseline: to every lemma the most frequent ET in the test set

									N
IT-V	ACC	ACH	ACT	STA	IT-P	ACC	ACH	ACT	STA
ACC	355	44	62	14	ACC	240	40	78	21
ACH	219	580	75	20	ACH	208	377	146	58
ACT	143	62	531	141	ACT	142	28	393	233
STA	73	32	138	224	STA	45	39	67	86
P	0.45	0.81	0.66	0.56	P	0.38	0.78	0.57	0.22
R	0.75	0.65	0.61	0.48	R	0.63	0.48	0.49	0.36
F	0.56	0.72	0.63	0.52	F	0.47	0.59	0.53	0.27
R I									
MaxEnt	ACC	ACH	ACT	STA	NC	ACC	ACH	ACT	STA
ACC	733	41	33	15	ACC	14	2	2	6
ACH	63	1.166	10	55	ACH	17	20	5	2
ACT	50	40	319	21	ACT	10	4	21	9
STA	30	79	20	454	STA	4	0	6	14
P	0.84	0.88	0.84	0.83	P	0.31	0.77	0.62	0.45
R	0.89	0.90	0.74	0.78	R	0.58	0.45	0.48	0.58
F	0.86	0.89	0.79	0.83	F	0.41	0.57	0.54	0.51
									× *

Corpus-based models

MaxEnt:

ACC, ACH easier than ACT, STA (cfr. Exp 1, but not Exp 3) difficulties on ACH vs. STA (polysemous items)

▶ <u>NC</u>:

performs more evenly across different ETs well on ACH vs. STA (opposite ET features)

All models:

difficulties on ACC vs. ACH, because they only differ for one feature

characterization of ET as "linguistic objects" strongly related with their corpus distribution

Conclusions

ET classes ≠ semantic classes

Cross-modal differences:

Semantic representations grounded in our sensorimotor perception (Embodied Cognition Framework, Haggard et al. 2007)

ETs are not a purely linguistic phenomenon but rather they provide us with schemes to interpret reality

From distributional features to semantic features: ET classes which have a clearer distributional characterizations are also easier for the speakers to identify

Future work

Comparison corpus-based model for English vs. Exp 2 and 4

Test metalinguistic judgements on small video clips (better depiction of DUR and RES)

