Logical metonymy from type clash to thematic fit

Alessandra Zarcone¹, Jason Utt¹, Alessandro Lenci²

¹Institut für Maschinelle Sprachverarbeitung, Stuttgart, Germany

²Dipartimento di Linguistica, Università di Pisa, Italy

alessandra.zarcone@ims.uni-stuttgart.de

AMLAP Riva del Garda, September 6-8 2012

Outline

- Logical metonymy and type clash
 - Logical metonymy
 - Logical metonymy as an instance of type clash
 - Why thematic fit?
- 2 A similarity-based model of type clash
 - A similarity-based model: Distributional Memory
 - Thematic fit models of logical metonymy
 - A different take on logical metonymy

 $\begin{array}{ccc} \text{begin the newspaper} & \longrightarrow & \text{begin reading the newspaper} \\ \text{enjoy the beer} & \longrightarrow & \text{enjoy drinking the beer} \end{array}$

 $\begin{array}{ccc} \text{begin the newspaper} & \longrightarrow & \text{begin } \textbf{reading } \text{ the newspaper} \\ & \to & \text{enjoy } \textbf{drinking } \text{ the beer} \end{array}$

begin the newspaper → begin reading the newspaper enjoy the beer → begin reading the newspaper enjoy drinking the beer

Logical metonymy

- **covert events** not realized, but available for inference
- extra processing costs

begin the newspaper → begin **reading** the newspaper enjoy the beer → begin **reading** the newspaper enjoy **drinking** the beer

Accounting for logical metonymy

- ▶ Why are covert events triggered?
- ▶ Where do covert events come from?

Why are covert events triggered?

event-denoting objects (EV) vs. entity-denoting objects (EN

EV: begin the afternoon

→ ✓ begin(afternoon)

EN: begin the newspaper

→ × begin(newspaper)

→ begin(CE(newspaper))

→ begin reading the newspaper)

▶ type clash [Pustejovsky, 1995, Jackendoff, 1997] covert events are triggered by a type mismatch (EV-subcategorizing verb + EN-denoting object)

Why are covert events triggered?

event-denoting objects (EV) vs. entity-denoting objects (EN)

EV: begin the afternoon

EN: begin the newspaper

- \rightarrow \checkmark begin(afternoon) \rightarrow \times begin(newspaper)
 - → ✓ begin(CE(newspaper))
 - \Rightarrow begin **reading** the newspaper

▶ type clash [Pustejovsky, 1995, Jackendoff, 1997]: covert events are triggered by a type mismatch (EV-subcategorizing verb + EN-denoting object)

Why are covert events triggered?

event-denoting objects (EV) vs. entity-denoting objects (EN)

EV: begin the afternoon \rightarrow \checkmark begin(afternoon) $\mid \rightarrow \times$ begin(newspaper)

EN: begin the newspaper

▶ type clash [Pustejovsky, 1995, Jackendoff, 1997]:

Why are covert events triggered?

event-denoting objects (EV) vs. entity-denoting objects (EN)

```
EV: begin the afternoon \rightarrow EN: begin the newspaper \rightarrow begin(afternoon) \rightarrow begin(newspaper) \rightarrow begin(CE(newspaper)) \rightarrow begin reading the newspaper
```

▶ type clash [Pustejovsky, 1995, Jackendoff, 1997]: covert events are triggered by a type mismatch (EV-subcategorizing verb + EN-denoting object)

Why are covert events triggered?

event-denoting objects (EV) vs. entity-denoting objects (EN)

```
EV: begin the afternoon \rightarrow begin(afternoon)

EN: begin the newspaper \rightarrow begin(newspaper)

\rightarrow begin(CE(newspaper))

\Rightarrow begin reading the newspaper
```

▶ type clash [Pustejovsky, 1995, Jackendoff, 1997]: covert events are triggered by a type mismatch (EV-subcategorizing verb + EN-denoting object)

	EV	EN
meton. v.	√ The boy started the fight	× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	✓ The boy saw the puzzle

Eye-tracking

- * main effect of Obj
- * Obj. x Verb interaction second-pass and total time measures at the obj.

► SPR:

- ** main effect of Obi.
- ** Obj. x Verb interaction one word after the obj.

[Traxler et al., 2002]

	EV	EN
meton. v.	√ The boy started the fight	× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	✓ The boy saw the puzzle

► Eye-tracking:

- * main effect of Obj.
- * Obj. x Verb interaction second-pass and total time measures at the obj.

► SPR:

- ** main effect of Obi.
- ** Obj. x Verb interaction one word after the obj.

[Traxler et al., 2002]

	EV	EN
meton. v.	√ The boy started the fight	× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	✓ The boy saw the puzzle

► Eye-tracking:

- * main effect of Obj.
- * Obj. x Verb interaction second-pass and total time measures at the obj.

► SPR:

- ** main effect of Obj.
- ** Obj. x Verb interaction one word after the obj.

[Traxler et al., 2002]

		EV	EN
ĺ			The pastor finished the sandwich
	non-met.	The pastor prepared the funeral	The pastor prepared the sandwich

- higher processing costs for EN Obj. + metonymic verb type-clash or lower thematic fit?
- 2 are the Subjects cueing the EV Objects?
- → computational models of thematic fit (no explicit type information

		EV	EN
Ī			The pastor finished the sandwich
	non-met.	The pastor prepared the funeral	The pastor prepared the sandwich

- higher processing costs for EN Obj. + metonymic verb type-clash or lower thematic fit?
- 2 are the Subjects cueing the EV Objects?
- → computational models of thematic fit (no explicit type information

	EV	EN
met.	The pastor finished the funeral	The pastor finished the sandwich
non-met.	The pastor prepared the funeral	The pastor prepared the sandwich

- higher processing costs for EN Obj. + metonymic verb type-clash or lower thematic fit?
- are the Subjects cueing the EV Objects?

→ computational models of thematic fit (no explicit type information

		EV	EN
Ī			The pastor finished the sandwich
	non-met.	The pastor prepared the funeral	The pastor prepared the sandwich

- higher processing costs for EN Obj. + metonymic verb type-clash or lower thematic fit?
- 2 are the Subjects cueing the EV Objects?
- → computational models of thematic fit (no explicit type information)

Generalized event knowledge:

Prototypical knowledge about typical events and their participants (first and second-hand experience, available in our memory)

lacktriangle activated by words in isolation ightarrow cue concepts from typical scenario

$$\langle arrest \rangle \xrightarrow{agent} cop$$

 $\langle arrest \rangle \xrightarrow{patient} crook$

▶ words rapidly combine → expectations about upcoming input [Bicknell et al., 2010, Matsuki et al., 2011]

thematic fit: typicality of a filler for a given argument slot

Generalized event knowledge:

Prototypical knowledge about typical events and their participants (first and second-hand experience, available in our memory)

- lacktriangledown activated by words in isolation ightarrow cue concepts from typical scenarios
 - $\langle arrest \rangle \xrightarrow{agent} cop$ $\langle arrest \rangle \xrightarrow{patient} crook$
- ▶ words rapidly combine → expectations about upcoming input [Bicknell et al., 2010, Matsuki et al., 2011]
- ▶ thematic fit: typicality of a filler for a given argument slot

Generalized event knowledge:

Prototypical knowledge about typical events and their participants (first and second-hand experience, available in our memory)

- lacktriangledown activated by words in isolation ightarrow cue concepts from typical scenarios
 - $\langle arrest \rangle \xrightarrow{agent} cop$ $\langle arrest \rangle \xrightarrow{patient} crook$
- words rapidly combine \rightarrow expectations about upcoming input [Bicknell et al., 2010, Matsuki et al., 2011]
 - $\langle journalist, check \rangle \xrightarrow{patient} spelling$ $\langle mechanic, check \rangle \xrightarrow{patient} car$
- ▶ thematic fit: typicality of a filler for a given argument slo

Generalized event knowledge:

Prototypical knowledge about typical events and their participants (first and second-hand experience, available in our memory)

- lacktriangledown activated by words in isolation ightarrow cue concepts from typical scenarios
 - $\langle arrest \rangle \xrightarrow{agent} cop$ $\langle arrest \rangle \xrightarrow{patient} crook$
- ightharpoonup words rapidly combine ightharpoonup expectations about upcoming input [Bicknell et al., 2010, Matsuki et al., 2011]
 - $\langle journalist, check \rangle \xrightarrow{patient} spelling$ $\langle mechanic, check \rangle \xrightarrow{patient} car$
- ▶ thematic fit: typicality of a filler for a given argument slot

Generalized event knowledge:

Prototypical knowledge about typical events and their participants (first and second-hand experience, available in our memory)

- lacktriangledown activated by words in isolation ightarrow cue concepts from typical scenarios
 - $\langle arrest \rangle \xrightarrow{agent} cop$ $\langle arrest \rangle \xrightarrow{patient} crook$
- ightharpoonup words rapidly combine ightharpoonup expectations about upcoming input [Bicknell et al., 2010, Matsuki et al., 2011]
- ▶ thematic fit: typicality of a filler for a given argument slot

Recent work in psycholinguistics:

selectional restrictions

binary

The child ate the cake [+edible]

The child convinced the cake [—convincible?]

selectional preferences

graded

The cop arrested ... the crook [high-typicality]

The cop arrested ... by the crook [low-typicality]

thematic fit
typicality of a filler
for a given argument slot

Recent work in psycholinguistics:

selectional restrictions binary

The child ate the cake [+edible]

The child convinced the cake [-convincible?]

selectional preferences

graded

The cop arrested ... the crook [high-typicality]

The cop arrested ... by the crook [low-typicality]

thematic fit
typicality of a filler
for a given argument slot

Recent work in psycholinguistics:

selectional restrictions binary

The child ate the cake [+edible]

The child convinced the cake [-convincible?]

selectional preferences

graded

The cop arrested ... the crook [high-typicality]

The cop arrested ... by the crook [low-typicality]

thematic fit
typicality of a filler
for a given argument slot

Recent work in psycholinguistics:

selectional restrictions binary

The child ate the cake

The child convinced the cake [—convincible?]

[+edible]

→ selectional preferences graded

The cop arrested ... the crook [high-typicality]

The cop arrested ... by the crook [low-typicality]

thematic fit
typicality of a filler
for a given argument slot

Recent work in psycholinguistics:

selectional restrictions binary

The child ate the cake [+edible]

The child convinced the cake [-convincible?]

selectional preferences graded

The cop arrested ... the crook [high-typicality]

The cop arrested ... by the crook [low-typicality]

thematic fit typicality of a filler for a given argument slot

Recent work in psycholinguistics:

selectional restrictions binary

The child ate the cake [+edible]

The child convinced the cake [-convincible?]

selectional preferences graded

The cop arrested ... the crook [high-typicality]

The cop arrested ... by the crook [low-typicality]

thematic fit typicality of a filler for a given argument slot

Outline

- 1 Logical metonymy and type clash
 - Logical metonymy
 - Logical metonymy as an instance of type clash
 - Why thematic fit?
- 2 A similarity-based model of type clash
 - A similarity-based model: Distributional Memory
 - Thematic fit models of logical metonymy
 - A different take on logical metonymy

Distributional Hypothesis [Harris, 1954, Miller and Charles, 1991]

- word's distributional behavior → semantic content (words occurring in similar contexts → semantically similar)
- ▶ vector of features of its linguistic context → semantic content (vector similarity → semantic similarity)

- a structured distributional semantic model
 - word-link-word triples (e.g. marine-subj-shoot or marine-shoot-gun)
- a multi-purpose framework in distributional semantics
 - ▶ similarity-based model of thematic fit

Distributional Hypothesis [Harris, 1954, Miller and Charles, 1991]

- ▶ word's distributional behavior → semantic content (words occurring in similar contexts → semantically similar)
- ▶ vector of features of its linguistic context → semantic content (vector similarity → semantic similarity)

- ▶ a structured distributional semantic model
 - word-link-word triples (e.g. marine-subj-shoot or marine-shoot-gun)
- a multi-purpose framework in distributional semantics
 - ▶ similarity-based model of thematic fit

Distributional Hypothesis [Harris, 1954, Miller and Charles, 1991]

- word's distributional behavior → semantic content (words occurring in similar contexts → semantically similar)
- ▶ vector of features of its linguistic context → semantic content (vector similarity → semantic similarity)

- ▶ a structured distributional semantic model
 - word-link-word triples (e.g. marine-subj-shoot or marine-shoot-gun)
- a multi-purpose framework in distributional semantics
 - ▶ similarity-based model of thematic fit

Distributional Hypothesis [Harris, 1954, Miller and Charles, 1991]

- word's distributional behavior → semantic content (words occurring in similar contexts → semantically similar)
- ▶ vector of features of its linguistic context → semantic content (vector similarity → semantic similarity)

- a structured distributional semantic model
 - word-link-word triples (e.g. marine-subj-shoot or marine-shoot-gun)
- a multi-purpose framework in distributional semantics
 - ► similarity-based model of thematic fit

Distributional Hypothesis [Harris, 1954, Miller and Charles, 1991]

- word's distributional behavior → semantic content (words occurring in similar contexts → semantically similar)
- ▶ vector of features of its linguistic context → semantic content (vector similarity → semantic similarity)

- a structured distributional semantic model
 - word-link-word triples (e.g. marine-subj-shoot or marine-shoot-gun)
- ▶ a multi-purpose framework in distributional semantics
 - similarity-based model of thematic fit

▶ Off-line: corpus-extracted weighted word-link-word tuples

On-line: 2-way spaces generated on demand, depending on task

A similarity-based model: Distributional Memory

▶ Off-line: corpus-extracted weighted word-link-word tuples

w_1	1	W2	σ	w_1	1	W_2	σ
marine	own	bomb	40.0	sergeant	use	gun	51.9
marine	use	bomb	82.1	sergeant	own	book	8.0
marine	own	gun	85.3	sergeant	use	book	10.1
marine	use	gun	44.8	teacher	own	bomb	5.2
marine	own	book	3.2	teacher	use	bomb	7.0
sergeant	own	gun	73.4	teacher	use	book	53.6

▶ On-line: 2-way spaces generated on demand, depending on task

	40.0	82.1		44.8		
sergeant	16.7	69.5	73.4	51.9		10.1
teacher	5.2	7.0	9.3	4.7	48.4	53.6

A similarity-based model: Distributional Memory

▶ Off-line: corpus-extracted weighted word-link-word tuples

w_1	1	W_2	σ	w_1	1	W_2	σ
marine	own	bomb	40.0	sergeant	use	gun	51.9
marine	use	bomb	82.1	sergeant	own	book	8.0
marine	own	gun	85.3	sergeant	use	book	10.1
marine	use	gun	44.8	teacher	own	bomb	5.2
marine	own	book	3.2	teacher	use	bomb	7.0
sergeant	own	gun	73.4	teacher	use	book	53.6

▶ On-line: 2-way spaces generated on demand, depending on task

	(own,bomb)	$\langle use, bomb \rangle$	$\langle own, gun \rangle$	$\langle use, gun \rangle$	(own,book)	$\langle use, book \rangle$
marine	40.0	82.1	85.3	44.8	3.2	3.3
sergeant	16.7	69.5	73.4	51.9	8.0	10.1
teacher	5.2	7.0	9.3	4.7	48.4	53.6

	EV	EN
meton. v.	√ The boy started the fight	× The boy started the puzzle
non-meton. v.	✓ The boy saw the fight	✓ The boy saw the puzzle

- weighted set of vectors of typical objects (from DM)
 - ► for each verb (*start, see*)
 - ▶ for each subj. (boy, pastor)
- 2 compose the sets and update the vector weights (sum)
- oprototypical object: centroid vector of the 20 most typical obj.
- **object thematic fit**: for each obj., similarity with the prototype boy-see-toy > boy-see-engine

		EV	EN
meton.	٧.	√ The boy started the fight	× The boy started the puzzle
non-meton.	٧.	√ The boy saw the fight	✓ The boy saw the puzzle

- weighted set of vectors of typical objects (from DM)
 - ► for each verb (start, see)
 - ▶ for each subj. (boy, pastor)
- Ocompose the sets and update the vector weights (sum)
- oprototypical object: centroid vector of the 20 most typical obj.
- **object thematic fit**: for each obj., similarity with the prototype bov-see-tov > bov-see-engine

	EV	EN
meton. v.	√ The boy started the fight	× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	✓ The boy saw the puzzle

- weighted set of vectors of typical objects (from DM)
 - ► for each verb (start, see)
 - ▶ for each subj. (boy, pastor)
- compose the sets and update the vector weights (sum)
- oprototypical object: centroid vector of the 20 most typical obj.
- **object thematic fit**: for each obj., similarity with the prototype boy-see-toy > boy-see-engine

	EV	EN
meton. v.	√ The boy started the fight	× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	✓ The boy saw the puzzle

- weighted set of vectors of typical objects (from DM)
 - ▶ for each verb (*start, see*)
 - ▶ for each subj. (boy, pastor)
- compose the sets and update the vector weights (sum)
- **o** prototypical object: centroid vector of the 20 most typical obj.
- object thematic fit: for each obj., similarity with the prototype bov-see-tov > bov-see-engine

		EV	EN
Ī	meton. v.	√ The boy started the fight	× The boy started the puzzle
	non-meton. v.	√ The boy saw the fight	✓ The boy saw the puzzle

- weighted set of vectors of typical objects (from DM)
 - ► for each verb (start, see)
 - ▶ for each subj. (boy, pastor)
- compose the sets and update the vector weights (sum)
- **o** prototypical object: centroid vector of the 20 most typical obj.
- **object thematic fit**: for each obj., similarity with the prototype boy-see-toy > boy-see-engine

	EV	EN
		× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	✓ The boy saw the puzzle

[Traxler et al., 2002] main effect of Obj. Obj. x Verb interaction

Sum model:

***main effect of Obj.

** Obj x Verb interaction

	EV	EN
meton. v.	√ The boy started the fight	× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	√ The boy saw the puzzle

- type-clash or thematic fit? → thematic fit is sufficient to explain the data, without resorting to type-clash
- ② are the Subjects cueing the EV Objects?
 → verb-only model

	EV	EN
meton. v.	✓ The boy started the fight	× The boy started the puzzle
non-meton. v.	✓ The boy saw the fight	✓ The boy saw the puzzle

- type-clash or thematic fit?

 → thematic fit is sufficient
 to explain the data,
 without resorting to type-class
- 2 are the Subjects cueing the EV Objects?

	EV	EN
		× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	√ The boy saw the puzzle

- type-clash or thematic fit?

 → thematic fit is sufficient
 to explain the data,
 without resorting to type-clash
- ② are the Subjects cueing the EV Objects?
 → verb-only model

	EV	EN
		× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	√ The boy saw the puzzle

- type-clash or thematic fit?

 → thematic fit is sufficient
 to explain the data,
 without resorting to type-clash
- are the Subjects cueing the EV Objects?
 - → verb-only model

	EV	EN
		× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	√ The boy saw the puzzle

- type-clash or thematic fit?

 → thematic fit is sufficient
 to explain the data,
 without resorting to type-clash
- are the Subjects cueing the EV Objects?
 - $\rightarrow \text{verb-only model}$

	EV	EN
meton. v.	√ start the fight	× start the puzzle
non-meton. v.	√ see the fight	√ see the puzzle

- weighted set of vectors of typical objects (from DM)
 - ► for each verb (*start, see*)
- prototypical object: centroid vector of the 20 most typical obj.
- **object thematic fit**: for each obj., similarity with the prototype drink-juice > drink-piano

	EV	EN
meton. v.	√ start the fight	× start the puzzle
non-meton. v.	√ see the fight	√ see the puzzle

- weighted set of vectors of typical objects (from DM)
 - ► for each verb (*start, see*)
- prototypical object: centroid vector of the 20 most typical obj.
- **object thematic fit**: for each obj., similarity with the prototype drink-juice > drink-piano

	EV	EN
		× start the puzzle
non-meton. v.	√ see the fight	√ see the puzzle

- weighted set of vectors of typical objects (from DM)
 - ► for each verb (*start, see*)
- **2 prototypical object**: centroid vector of the 20 most typical obj.
- **object thematic fit**: for each obj., similarity with the prototype drink-juice > drink-piano

	EV	EN
meton. v.	√ start the fight	× start the puzzle
non-meton. v.	√ see the fight	√ see the puzzle

- weighted set of vectors of typical objects (from DM)
 - ▶ for each verb (start, see)
- **2 prototypical object**: centroid vector of the 20 most typical obj.
- **object thematic fit**: for each obj., similarity with the prototype drink-juice > drink-piano

	EV	EN
meton. v.	√ start the fight	× start the puzzle √ see the puzzle
non-meton. v.	√ see the fight	√ see the puzzle

[Traxler et al., 2002] main effect of Obj. Obj. x Verb interaction

Verb-only model:

***main effect of Obj.

** Obj x Verb interaction

	EV	EN
		× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	✓ The boy saw the puzzle

- type-clash or thematic fit?

 → thematic fit is sufficient to explain the data, without resorting to type-clash.
- ② are the Subjects cueing the EV Objects? → no: same pattern of results in a verb-only thematic fit model

	EV	EN
meton. v.	√ The boy started the fight	× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	✓ The boy saw the puzzle

1 type-clash or thematic fit?

- → thematic fit is sufficient to explain the data, without resorting to type-clash
- ② are the Subjects cueing the EV Objects?
 - → no: same pattern of results in a verb-only
 - thematic fit model

	EV	EN
meton. v.	√ The boy started the fight	× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	✓ The boy saw the puzzle

- type-clash or thematic fit?

 → thematic fit is sufficient
 to explain the data,
 without resorting to
 type-clash
- ② are the Subjects cueing the EV Objects? → no: same pattern of results in a verb-only thematic fit model

	EV	EN
meton. v.	√ The boy started the fight	× The boy started the puzzle
non-meton. v.	✓ The boy saw the fight	✓ The boy saw the puzzle

- type-clash or thematic fit? → thematic fit is sufficient to explain the data, without resorting to type-clash
- are the Subjects cueing the EV Objects?

→ no: same pattern of results in a verb-only thematic fit model

	EV	EN
meton. v.	✓ The boy started the fight	× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	✓ The boy saw the puzzle

- type-clash or thematic fit? → thematic fit is sufficient to explain the data, without resorting to type-clash

▶ Where do covert events come from?

	high thematic fit	low thematic fit
The baker finished the icing	✓ SPREAD	× EAT
The child finished the icing	✓ EAT	× SPREAD

- → generalized event knowledge / thematic fit affects covert event retrieval in logical metonymies (probe recognition, [Zarcone et al., 2012])

The pastor finished	√ the funeral	× the sandwich

▶ Where do covert events come from?

	high thematic fit	low thematic fit
The baker finished the icing	✓ SPREAD	× EAT
The child finished the icing	✓ EAT	× SPREAD

- → generalized event knowledge / thematic fit affects covert event retrieval in logical metonymies (probe recognition, [Zarcone et al., 2012])
- ▶ Why are covert events triggered?

	high thematic fit	low thematic fit
The pastor finished	√ the funeral	× the sandwich

two mechanisms
for triggering (type-clash) and
and covert event retrieval
(complex lexical entries)

for triggering and covert event retrieval generalized event knowledge)

▶ Where do covert events come from?

	high thematic fit	low thematic fit
The baker finished the icing	✓ SPREAD	× EAT
The child finished the icing	✓ EAT	× SPREAD

- → generalized event knowledge / thematic fit affects covert event retrieval in logical metonymies (probe recognition, [Zarcone et al., 2012])
- ▶ Why are covert events triggered?

	high thematic fit	low thematic fit
The pastor finished	√ the funeral	× the sandwich

two mechanisms

for triggering (type-clash) and and covert event retrieval (complex lexical entries) one mechanism
for triggering and
covert event retrieval
generalized event knowledge)

▶ Where do covert events come from?

	high thematic fit	low thematic fit
The baker finished the icing	✓ SPREAD	× EAT
The child finished the icing	✓ EAT	× SPREAD

- → generalized event knowledge / thematic fit affects covert event retrieval in logical metonymies (probe recognition, [Zarcone et al., 2012])
- ▶ Why are covert events triggered?

	high thematic fit	low thematic fit
The pastor finished	√ the funeral	× the sandwich

two mechanisms
for triggering (type-clash) and
and covert event retrieval
(complex lexical entries)

one mechanism
for triggering and
covert event retrieval
generalized event knowledge)

▶ Where do covert events come from?

	high thematic fit	low thematic fit
The baker finished the icing	✓ SPREAD	× EAT
The child finished the icing	✓ EAT	× SPREAD

- → generalized event knowledge / thematic fit affects covert event retrieval in logical metonymies (probe recognition, [Zarcone et al., 2012])
- ▶ Why are covert events triggered?

	high thematic fit	low thematic fit
The pastor finished	√ the funeral	× the sandwich

two mechanisms

for triggering (type-clash) and

and covert event retrieval

(complex lexical entries)

one mechanism

for triggering and covert event retrieval (generalized event knowledge)

▶ Where do covert events come from?

	high thematic fit	low thematic fit
The baker finished the icing	✓ SPREAD	× EAT
The child finished the icing	✓ EAT	× SPREAD

- → generalized event knowledge / thematic fit affects covert event retrieval in logical metonymies (probe recognition, [Zarcone et al., 2012])
- ▶ Why are covert events triggered?

	high thematic fit	low thematic fit
The pastor finished	√ the funeral	× the sandwich

two mechanisms
for triggering (type-clash) and
and covert event retrieval
(complex lexical entries)

one mechanism
for triggering and
covert event retrieval
(generalized event knowledge)

Acknowledgements

The research for this paper was funded by the German Research Foundation (DFG) as part of the SFB 732 - project D6 at the University of Stuttgart

Thank you!

- Baroni, M. and Lenci, A. (2010). Distributional memory: A general framework for corpus-based semantics. Computational Linguistics, 36(4):1-49.
- Bicknell, K., Elman, J. L., Hare, M., McRae, K., and Kutas, M. (2010). Effects of event knowledge in processing verbal arguments, Journal of Memory and Language, 63(4):489-505.
- Ferretti, T. R., McRae, K., and Hatherell, A. (2001). Integrating verbs, situation schemas and thematic role concept. Journal of Memory and Language, 44:516-547.
- Harris, Z. S. (1954). Distributional structure. Word. 10(23):146–162.
- Jackendoff, R. (1997). The Architecture of the Language Faculty. MIT Press.
- Lenci, A. (2011). Composing and updating verb argument expectations: A distributional semantic model. In Proceedings of the 2nd Workshop on Cognitive Modeling and Computational Linguistics, pages 58-66, Portland, Oregon.
- Matsuki, K., Chow, T., Hare, M., Elman, J. L., Scheepers, C., and McRae, K. (2011). Event-based plausibility immediately influences on-line language comprehension. Journal of Experimental Psychology: Language, Memory, and Cognition, 37(4):913-934.
- McRae, K. and Matsuki, K. (2009). People use their knowledge of common events to understand language, and do so as quickly as possible. Language and Linguistics Compass, 3/6:1417-1429.
- Miller, G. A. and Charles, W. G. (1991). Contextual correlates of semantic similarity. Language and Cognitive Processes, 6(1):1-28.
- Pustejovsky, J. (1995). The Generative Lexicon. MIT Press.

- Traxler, M. J., Pickering, M. J., and McElree, B. (2002). Coercion in sentence processing: evidence from eye-movements and self-paced reading. *Journal of Memory and Language*, 47:530–547.
- Zarcone, A., Padó, S., and Lenci, A. (2012). Inferring covert events in logical metonymies: a probe recognition experiment. In *Proceedings of the 34th Annual Conference of the Cognitive Science Society*, Austin, TX.