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Logical metonymy and covert events

Logical metonymy:

begin the newspaper → begin reading the newspaper
enjoy the beer → enjoy drinking the beer

↓

Covert Events (CE)

I not realized on the surface, but understood

I influence reading times, available for inference

I a challenge to compositionality
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Accounts of logical metonymy

begin the newspaper → begin reading the newspaper
enjoy the beer → enjoy drinking the beer

Lexical account [Pustejovsky, 1995]:

I ontological trigger: CEs triggered by a type-mismatch
(event-subcat. verb + entity-denoting obj.)

I qualia structures: CEs from qualia structure in the lexicon

Pragmatic account
[Fodor and Lepore, 1998, De Almeida and Dwivedi, 2008]:

I dynamic inferences (world knowledge and communication principles)

I post-lexical information
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Effects of typicality / thematic fit

Selectional preferences
[Ferretti et al., 2001,
Bicknell et al., 2010]:

I arrest
agent−−−→ cop

I 〈journalist, check〉 patient−−−−→ spelling

I 〈mechanic, check〉 patient−−−−→ car

Logical metonymy
[Zarcone and Padó, 2011,

Zarcone et al., 2012]:

I 〈confectioner , finish, icing〉
CE−−→ spread

I 〈child , finish, icing〉
CE−−→ eat

A test bed for cognitively plausible models of language:

I sensitive to context and typicality effects

I interpretation of implicit content (CEs)

I between lexical semantics and world knowledge
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Effects of typicality / thematic fit

Der Konditor / das Kind hörte auf, die Glasur aufzutragen und fing mit..
The baker / the child finished the icing to spread and started with...
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facilitation effect on
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Der Konditor / das Kind hörte mit der Glasur auf → AUFTRAGEN
The baker / the child finished with the icing → SPREAD
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Probe recognition:
(”was the probe in the
sentence?”)
↓
facilitation effect on
low typicality
CEs
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Task

I 48 test sentence pairs from the psycholinguistic experiments:

Der Braumeister vermied das Bier → brauen / trinken
The brewer avoided the beer → brew / drink

I 48 tuple pairs for the model evaluation:

CE

S V O high-typicality low-typicality

Braumeister vermeiden Bier brauen trinken
Student vermeiden Bier trinken brauen

I Evaluation task: given S, V and O, choose the
high-typicality CE over the low-typicality CE
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Two compositional models

Probabilistic models

I based on [Lapata et al., 2003]
and
[Lapata and Lascarides, 2003]

I first-order co-occurrence
information

I most probable event

Similarity-based models

I based on [Lenci, 2011]

I higher-order co-occurrence
information

I most similar event to
prototypical event

Novelty

I German data

I large web corpus

I first similarity-based account of logical metonymy
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Probabilistic models

Established model for the task: probabilistic models of logical metonymy
[Lapata et al., 2003, Lapata and Lascarides, 2003]

I logical metonymy interpretation as joint distribution P(, , , )

→ /

I two models

SOVp: CE in a given context maximizes P(s, v , o, e):

ê = arg max
e

P(e) P(o|e) P(v |e) P(s|e)

SOp: CE in a given context maximizes P(s, o, e):

ê = arg max
e

P(e) P(o|e) P(s|e)

I probabilities estimated from corpus extracted co-occurrences
(simple co-occurrences)
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Probabilistic models

Probabilistic baseline

the student avoided the beer → drinking / brewing

Bp: CE in a given context maximizes P(o, e):

ê = arg max
e

P(e) P(o|e)

I given our dataset, the baseline reaches 50% accuracy,
because the dataset is counterbalanced:

CE

S V O high-typicality low-typicality

Braumeister vermeiden Bier brauen trinken
Student vermeiden Bier trinken brauen
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Similarity-based models

Distributional Hypothesis [Harris, 1954, Miller and Charles, 1991]

I words occurring in similar contexts → semantically similar

I meaning of a word → vector of features of its linguistic context

I semantic similarity → vector similarity

↓
A cognitive hypothesis about the form of semantic representations

I word distributional behavior → semantic content (cognitive level)

I graded category membership [Rosch, 1975], multiple sense activation
[Erk, 2010]

I lexical development [Li et al., 2004], category-related deficits
[Vigliocco et al., 2004], selectional preferences [Erk, 2007]
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Alessandra Zarcone, Jason Utt, Sebastian Padó Modeling covert event retrieval in logical metonymy 14 / 32



Logical metonymy
Models of logical metonymy

Results
Conclusions

Task
Probabilistic models
Similarity-based models
Evaluation

Similarity-based models

Distributional Hypothesis [Harris, 1954, Miller and Charles, 1991]

I words occurring in similar contexts → semantically similar

I meaning of a word → vector of features of its linguistic context

I semantic similarity → vector similarity

↓
A cognitive hypothesis about the form of semantic representations

I word distributional behavior → semantic content (cognitive level)

I graded category membership [Rosch, 1975], multiple sense activation
[Erk, 2010]

I lexical development [Li et al., 2004], category-related deficits
[Vigliocco et al., 2004], selectional preferences [Erk, 2007]
→ a multi-purpose framework: Distributional Memory
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Similarity-based models: DM

Distributional Memory (DM) [Baroni and Lenci, 2010]

I multi-purpose framework in distributional semantics

I off-line: tensors of weighted word-link-word tuples, each mapped
onto a score by a function σ : 〈w1 l w2〉 → R+

I here, syntactic and lexicalized links (TypeDM)

I on-line: dependent on task, dedicated semantic space generated from
the tensor (e.g. word by link-word space W1 × LW2)

TypeDM for German

I 884M word SDeWaC web corpus [Faaß et al., 2010]
(MATE German dependency parser [Bohnet, 2010])

I 55M instances of simple syntactic relations
(subj tr, subj intr, obj, iobj, comp, nmod)

I 104M instances of lexicalized patterns
(noun–prep–noun, adj–noun-(of)-noun, etc.)
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Similarity-based models

I Beyond word-level: compositional distributional semantics
[Mitchell and Lapata, 2010, Guevara, 2011]

I Task: given a verb and different subjects, different impact of the
subjects on the semantic expectation for expected objects

I 〈journalist, check〉 patient−−−−→ spelling

I 〈mechanic, check〉 patient−−−−→ car

I Expectation Composition and Update (ECU), [Lenci, 2011]:
predict the degree of thematic fit for verb-argument combinations
from TypeDM
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Similarity-based models: ECU

Expectation Composition and Update (ECU) [Lenci, 2011]

Compute thematic fit for car and spelling as objects of 〈journalist, check〉
1 prototypical filler

1 compute expectations for the object (weighted sets of objects)

verb’s expectations: EXV (v) = λo. σ(
˙
v obj−1 o

¸
)

subject’s expectations: EXS (s) = λo. σ(〈s verb o〉)

2 compose (sum or product) and update

EXSV (s, v) = λo.EXV (v)(o) ◦ EXS (s)(o)

3 prototype object as centroid of W1 × LW2 vectors
of the 20 most expected objects

2 object thematic fit: similarity of a noun to the prototype object

3 compare thematic fit of car and spelling
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Alessandra Zarcone, Jason Utt, Sebastian Padó Modeling covert event retrieval in logical metonymy 17 / 32



Logical metonymy
Models of logical metonymy

Results
Conclusions

Task
Probabilistic models
Similarity-based models
Evaluation

Similarity-based models: ECU

Expectation Composition and Update (ECU) [Lenci, 2011]

Compute thematic fit for car and spelling as objects of 〈journalist, check〉
1 prototypical filler

1 compute expectations for the object (weighted sets of objects)

verb’s expectations: EXV (v) = λo. σ(
˙
v obj−1 o

¸
)

subject’s expectations: EXS (s) = λo. σ(〈s verb o〉)

2 compose (sum or product) and update

EXSV (s, v) = λo.EXV (v)(o) ◦ EXS (s)(o)

3 prototype object as centroid of W1 × LW2 vectors
of the 20 most expected objects

2 object thematic fit: similarity of a noun to the prototype object

3 compare thematic fit of car and spelling
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ECU as a model of logical metonymy

Compute thematic fit for drink and brew as CEs of 〈brewer , avoid , beer〉
1 prototypical CE

1 compute expectations for the CE (weighted sets of events)

subject’s expectations: EXS (s) = λe. σ(〈s subj e〉)
object’s expectations: EXO(o) = λe. σ(〈o obj e〉)
metonymic verb’s expectations: EXV (v) = λe. σ(

˙
v comp−1 e

¸
2 compose (sum or product) and update
3 prototype CE

2 event thematic fit: similarity of an event to the prototype CE

3 compare thematic fit of drink and brew
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Similarity-based models: ECU for logical metonymy

the student avoided the beer → drinking / brewing

SOV : composing expectations from subject, object, metonymic
verb

SOVΣ: composition function is sum
SOVΠ: composition function is product

SO: composing expectations from subject and object

SOΣ: composition function is sum
SOΠ: composition function is product

Alessandra Zarcone, Jason Utt, Sebastian Padó Modeling covert event retrieval in logical metonymy 19 / 32



Logical metonymy
Models of logical metonymy

Results
Conclusions

Task
Probabilistic models
Similarity-based models
Evaluation

Similarity-based models: ECU for logical metonymy

the student avoided the beer → drinking / brewing

SOV : composing expectations from subject, object, metonymic
verb

SOVΣ: composition function is sum
SOVΠ: composition function is product

SO: composing expectations from subject and object

SOΣ: composition function is sum
SOΠ: composition function is product
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Similarity-based models: ECU for logical metonymy

the student avoided the beer → drinking / brewing

Bs similarity-based baseline, expectations from object only

I given our dataset, the baseline reaches 50% accuracy,
because the dataset is counterbalanced:

CE

S V O high-typicality low-typicality

Braumeister vermeiden Bier brauen trinken
Student vermeiden Bier trinken brauen
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Evaluation

Evaluation

coverage: (# answered datapoints)

(# tot. datapoints)

(percentage of datapoints for which a model can make a prediction)

accuracy: (# correct answers)

(# answered datapoints)

(covered datapoints only, ratio of correct predictions to the number of predictions)

backoff accuracy: coverage× accuracy + ((1− coverage)× 0.5)

(emulating a backoff procedure with baseline performance for non-covered items)

differences between models: χ2 test

(2×2 correct - incorrect answer contingency matrix)
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Probabilistic Models Similarity-based Models

Bp SOVp SOp Bs SOVΣ SOVΠ SOΣ SOΠ

Accuracy 0.50 0.62 0.75 0.50 0.68 0.56 0.68 0.70
Coverage 1.00 0.44 0.75 1.00 0.98 0.94 0.98 0.98

Backoff Accuracy 0.50 0.55 0.69 0.50 0.68 0.56 0.68 0.70

I both classes outperform the baselines

I similarity-based models maintain the accuracy
of probabilistic models while guaranteeing higher coverage

I SO models perform better than SOV models
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Probabilistic Models Similarity-based Models

Bp SOVp SOp Bs SOVΣ SOVΠ SOΣ SOΠ

Bp

P
ro

b
.

SOVp -
SOp * -

Bs - - *
SOVΣ * - - *

S
im

ila
ri

ty

SOVΠ - - - - -
SOΣ * - - * - -
SOΠ ** ∗ - ** - ∗ -

I both classes outperform the baselines
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Results

I
˙
Dieb schmuggeln/schleifen Diamant

¸
(
˙
thief smuggle/cut diamond

¸
)

I prob. models: no coverage
I sim. models: events associated with both Dieb and Diamant:

stehlen (steal), rauben (thieve), holen (get), entwenden (purloin),
erbeuten (snatch), verkaufen (sell), nehmen (take), klauen (swipe)

I
˙
Mechaniker fahren/reparieren Auto

¸
(〈mechanic drive/fix car〉)

I prob. models: wrong answer (high overall frequency of fahren)
I sim. models: events associated with both Mechaniker and Auto:

bauen (build), reparieren (fix)
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EXSO(〈Chauffeur,Auto〉) EXSO(〈Mechaniker,Auto〉)
fahren (drive) bauen (build)
parken (park) lassen (let/leave)
lassen (let/leave) besitzen (own)
geben (give) reparieren (repair)
sehen (see) brauchen (need)
bringen (bring) sehen (see)
steuern (steer) benutzen (use)
halten (keep/hold) stellen (put)

Table: Updated expectations in SOΠ
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Alessandra Zarcone, Jason Utt, Sebastian Padó Modeling covert event retrieval in logical metonymy 24 / 32



Logical metonymy
Models of logical metonymy

Results
Conclusions

Results

Problematic cases for both model classes:

I 〈Lehrerin benoten/schreiben Klausur〉 (
˙
teacher grade/take exam

¸
)

I both model classes: schreiben (write) is much more frequent
than benoten (grade)

I 〈Schüler lernen/schreiben Geschichte〉 (
˙
student study/write story

¸
)

I prob models: very frequent idiomatic expression (to write history)
I sim. models: history sense gets most informative events

erzählen (tell), lesen (read), hören (hear), erfinden (invent), and
studieren (study), lehren (teach)

I
˙
Geburtstagskind einpacken/auspacken Geschenk

¸
(
˙
birthday-boy/girl wrap/unwrap present

¸
)

I prob. models: no coverage
I sim. models: events associated with Geburtstagskind:

bekommen (receive), sagen (say), auffuttern (eat up),
herumkommandieren (boss around), ausblasen (blow out)
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Conclusions

A contrastive study of two classes of computational models predicting CEs
for logical metonymies:

I both model classes:
→ outperform baselines which take into account
only information coming from the object
→ SO models perform better than SOV models

I prob models: low coverage
→ based on simple (first-order) co-occurrence (sparsity issues)

→ not the case for more complex models introducing latent variables

[Prescher et al., 2000]

I sim. models: accuracy of probabilistic models
while guaranteeing higher coverage
→ take advantage of higher-order co-occurrences
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