Event knowledge and models of logical metonymy interpretation

Alessandra Zarcone

May 9, 2014

Jack Kerouac began the book around 1949 in New York

Jack Kerouac began the book around 1949 in New York \rightarrow writing

Jack Kerouac began the book around 1949 in New York

 \rightarrow writing

- ightharpoonup involve *covert events* (*metonymy*: book \rightarrow writing the book)
- ► The Source Question:

Jack Kerouac began the book around 1949 in New York

 \rightarrow writing

- ightharpoonup involve covert events (metonymy: book \rightarrow writing the book)
 - not realized on the surface, but understood
 - influence reading times
 - a challenge to compositionality
- ► The Source Question:

Jack Kerouac began the book around 1949 in New York

 \rightarrow writing

Logical Metonymies [Pustejovsky, 1995]

- ightharpoonup involve covert events (metonymy: book \rightarrow writing the book)
 - not realized on the surface, but understood
 - influence reading times
 - a challenge to compositionality
- The Source Question:

What is the source of the covert event (lexicon, world knowledge)?

Jack Kerouac began the book around 1949 in New York \rightarrow writing

- ► EVent-selecting verb + ENtity-denoting object
- ► The Trigger Question:

Jack Kerouac began the book_{FN} around 1949 in New York \rightarrow writing

- ► EVent-selecting verb + ENtity-denoting object ⇔ Jack Kerouac began his journey_{FV} across America.
- ► The Trigger Question:

Jack Kerouac began the book_{EN} around 1949 in New York \rightarrow writing

- ► EVent-selecting verb + ENtity-denoting object ⇔ Jack Kerouac began his journey_{EV} across America.
- The Trigger Question: What triggers the metonymy (and the covert event)?

Outline

- Logical metonymy and covert events
 - The Lexical Hypothesis
 - The Pragmatic Hypothesis
 - The Words-as-Cues Hypothesis
- The Source Question
 - Psycholinguistic evidence
 - Computational modeling
- The Trigger Question
 - Computational modeling
 - Psycholinguistic evidence
- **Conclusions**

- ▶ **The Trigger Question**: What *triggers* the metonymy?

The Lexical Hypothesis [Pustejovsky, 1995]:

- ▶ **The Source Question**: What is the *source* of the covert event?
 - ⇒ artifacts associated with events in the lexicon (qualia)

▶ **The Trigger Question**: What *triggers* the metonymy?

The Lexical Hypothesis [Pustejovsky, 1995]:

- ▶ **The Source Question**: What is the *source* of the covert event?
 - ⇒ artifacts associated with events in the lexicon (qualia)

$$\begin{array}{c} \mathsf{book} \xrightarrow{\mathit{purpose}} \mathsf{writing} \\ \mathsf{book} \xrightarrow{\mathit{purpose}} \mathsf{reading} \end{array}$$

▶ **The Trigger Question**: What *triggers* the metonymy?

- ▶ **The Source Question**: What is the *source* of the covert event?
 - ⇒ artifacts associated with events in the lexicon (qualia)

```
book \xrightarrow{production} writing
book \xrightarrow{purpose} reading
```

- ▶ **The Trigger Question**: What *triggers* the metonymy?
 - ⇒ type-clash: event-selecting verb + entity-denoting obj.

- ▶ **The Source Question**: What is the *source* of the covert event?
 - ⇒ artifacts associated with events in the lexicon (qualia)

```
book \xrightarrow{production} writing
book \xrightarrow{purpose} reading
```

- ▶ **The Trigger Question**: What *triggers* the metonymy?
 - ⇒ type-clash: event-selecting verb + entity-denoting obj. began his journey_{EV} vs. began his book_{EN}

- ▶ **The Source Question**: What is the *source* of the covert event?
 - ⇒ artifacts associated with events in the lexicon (qualia)

```
book \xrightarrow{production} writing
book \xrightarrow{purpose} reading
```

- ▶ **The Trigger Question**: What *triggers* the metonymy?
 - ⇒ type-clash: event-selecting verb + entity-denoting obj. began his journey_{EV} vs. began his book_{EN}
- preserves compositionality and the generative power of the lexicon

- ▶ The Source Question: What is the *source* of the covert event?
 - ⇒ artifacts associated with events in the lexicon (qualia)

```
book \xrightarrow{production} writing
book \xrightarrow{purpose} reading
```

- ▶ **The Trigger Question**: What *triggers* the metonymy?
 - ⇒ type-clash: event-selecting verb + entity-denoting obj. began his journey_{EV} vs. began his book_{EN}
- preserves compositionality and the generative power of the lexicon
- underestimates the range of covert events and their context-sensitivity [Zarcone and Padó, 2010, Zarcone and Rüd, 2012]

- ▶ **The Trigger Question**: What *triggers* the metonymy?

- ▶ **The Source Question**: What is the *source* of the covert event?
 - ⇒ post-lexical inferences tapping into world knowledge
- ▶ **The Trigger Question**: What *triggers* the metonymy?

- ▶ **The Source Question**: What is the *source* of the covert event?
 - ⇒ post-lexical inferences tapping into world knowledge $regret \rightarrow$ an event has previously been performed $begin \rightarrow the subject begins an event with the object$
- ▶ **The Trigger Question**: What *triggers* the metonymy?

- ▶ **The Source Question**: What is the *source* of the covert event?
 - ⇒ post-lexical inferences tapping into world knowledge $regret \rightarrow$ an event has previously been performed $begin \rightarrow the subject begins an event with the object$
- ▶ The Trigger Question: What triggers the metonymy?
 - ⇒ underspecification of logical metonymies

- ▶ **The Source Question**: What is the *source* of the covert event?
 - ⇒ post-lexical inferences tapping into world knowledge $regret \rightarrow$ an event has previously been performed $begin \rightarrow the subject begins an event with the object$
- ▶ The Trigger Question: What triggers the metonymy?
 - ⇒ underspecification of logical metonymies begin the book \rightarrow reading, writing, translating, ...

- ▶ **The Source Question**: What is the *source* of the covert event?
 - ⇒ post-lexical inferences tapping into world knowledge $regret \rightarrow$ an event has previously been performed $begin \rightarrow the subject begins an event with the object$
- ▶ The Trigger Question: What triggers the metonymy?
 - ⇒ underspecification of logical metonymies begin the book \rightarrow reading, writing, translating, ...
- acknowledges the role of communicative intention and of context

- ▶ **The Source Question**: What is the *source* of the covert event?
 - ⇒ post-lexical inferences tapping into world knowledge $regret \rightarrow$ an event has previously been performed $begin \rightarrow the subject begins an event with the object$
- ▶ The Trigger Question: What triggers the metonymy?
 - ⇒ underspecification of logical metonymies begin the book \rightarrow reading, writing, translating, ...
- acknowledges the role of communicative intention and of context
- does not provide a testable set of interpretations

An alternative hypothesis:

An alternative hypothesis:

- ▶ more context sensitive (⇔ Lexical Hypothesis)
- ▶ testable set of interpretations (⇔ Pragmatic Hypothesis)

The Words-as-Cues Hypothesis

Psycholinguistic motivation

wash car

wash hair

wash car

 \rightarrow hose, sponge, outdoor

wash hair

→ shampoo, sink, bathroom

Generalized event knowledge [McRae and Matsuki, 2009]:

Prototypical knowledge about events and their participants (first and second-hand experience, available in our memory)

$$\langle \mathit{arrest}
angle \overset{\mathit{agent}}{\longrightarrow} \mathit{cop} \ \langle \mathit{arrest}
angle \overset{\mathit{patient}}{\longrightarrow} \mathit{crook}$$

▶ words rapidly combine ⇒ expectations about upcoming input

Generalized event knowledge [McRae and Matsuki, 2009]:

Prototypical knowledge about events and their participants (first and second-hand experience, available in our memory)

▶ activated by words in isolation ⇒ cue concepts from typical scenarios

$$\langle arrest \rangle \xrightarrow{agent} cop$$

 $\langle arrest \rangle \xrightarrow{patient} crook$

▶ words rapidly combine ⇒ **expectations** about upcoming input

Generalized event knowledge [McRae and Matsuki, 2009]:

Prototypical knowledge about events and their participants (first and second-hand experience, available in our memory)

 \triangleright activated by words in isolation \Rightarrow cue concepts from typical scenarios

$$\langle arrest \rangle \xrightarrow{agent} cop$$

 $\langle arrest \rangle \xrightarrow{patient} crook$

▶ words rapidly combine ⇒ expectations about upcoming input [Bicknell et al., 2010, Matsuki et al., 2011]

Operationalize thematic role-based expectations

Generalized event knowledge [McRae and Matsuki, 2009]:

Prototypical knowledge about events and their participants (first and second-hand experience, available in our memory)

 \triangleright activated by words in isolation \Rightarrow cue concepts from typical scenarios

$$\langle arrest \rangle \xrightarrow{agent} cop$$

 $\langle arrest \rangle \xrightarrow{patient} crook$

▶ words rapidly combine ⇒ expectations about upcoming input [Bicknell et al., 2010, Matsuki et al., 2011]

Donna used the hose to wash her filthy...

Operationalize thematic role-based expectations

Generalized event knowledge [McRae and Matsuki, 2009]:

Prototypical knowledge about events and their participants (first and second-hand experience, available in our memory)

 \triangleright activated by words in isolation \Rightarrow cue concepts from typical scenarios

$$\langle arrest \rangle \xrightarrow{agent} cop$$

 $\langle arrest \rangle \xrightarrow{patient} crook$

▶ words rapidly combine ⇒ expectations about upcoming input [Bicknell et al., 2010, Matsuki et al., 2011]

Donna used the hose to wash her filthy... car / hair

Operationalize thematic role-based expectations

Generalized event knowledge [McRae and Matsuki, 2009]:

Prototypical knowledge about events and their participants (first and second-hand experience, available in our memory)

 \triangleright activated by words in isolation \Rightarrow cue concepts from typical scenarios

$$\langle arrest \rangle \xrightarrow{agent} cop$$

 $\langle arrest \rangle \xrightarrow{patient} crook$

▶ words rapidly combine ⇒ expectations about upcoming input [Bicknell et al., 2010, Matsuki et al., 2011]

Donna used the hose to wash her filthy... car / hair

- Operationalize thematic role-based expectations
 - ⇒ thematic fit: typicality of a filler for a given argument slot

The Lexical Hypothesis
The Pragmatic Hypothesis
The Words-as-Cues Hypothesis

My proposal: the Words-as-Cues Hypothesis

The **baker** finished the icing

My proposal: the Words-as-Cues Hypothesis

The **baker** finished the icing \rightarrow **spreading**

The **child** finished the icing \rightarrow **eating**

- ▶ **The Source Question**: What is the *source* of the covert event?
 - generalized knowledge of events and their participants: covert events relevant to typical event scenarios are retrieved. The baker finished the icing.
- ▶ **The Trigger Question**: What *triggers* the metonymy?
 - ⇒ low thematic fit between the verb and the object event-denoting nouns are better fillers for metonymic verbs
 - √ begin the journey ⇔ × begin the book
- √ ranked (testable) set of interpretations, determined by context

The Words-as-Cues Hypothesis [Zarcone et al., 2014]:

- ▶ **The Source Question**: What is the *source* of the covert event?
 - generalized knowledge of events and their participants: covert events relevant to typical event scenarios are retrieved

The baker finished the icing (spreading vs. eating)

- ► **The Trigger Question**: What *triggers* the metonymy?
 - event-denoting nouns are better fillers for metonymic verbs
- √ ranked (testable) set of interpretations, determined by context

- ▶ **The Source Question**: What is the *source* of the covert event?
 - generalized knowledge of events and their participants: covert events relevant to typical event scenarios are retrieved The baker finished the icing (spreading vs. eating)
- ▶ **The Trigger Question**: What *triggers* the metonymy?
 - event-denoting nouns are better fillers for metonymic verbs
- √ ranked (testable) set of interpretations, determined by context

- ▶ **The Source Question**: What is the *source* of the covert event?
 - ⇒ generalized knowledge of events and their participants: covert events relevant to typical event scenarios are retrieved
 The baker finished the icing (spreading vs. eating)
- ▶ **The Trigger Question**: What *triggers* the metonymy?
 - ⇒ <u>low thematic fit</u> between the verb and the object event-denoting nouns are better fillers for metonymic verbs
 - √ begin the journey ⇔ × begin the book
- √ ranked (testable) set of interpretations, determined by context

- ▶ **The Source Question**: What is the *source* of the covert event?
 - ⇒ generalized knowledge of events and their participants: covert events relevant to typical event scenarios are retrieved
 The baker finished the icing (spreading vs. eating)
- ▶ **The Trigger Question**: What *triggers* the metonymy?
 - ⇒ <u>low thematic fit</u> between the verb and the object event-denoting nouns are better fillers for metonymic verbs
 - √ begin the journey ⇔ × begin the book
- √ ranked (testable) set of interpretations, determined by context

- ▶ **The Source Question**: What is the *source* of the covert event?
 - ⇒ generalized knowledge of events and their participants: covert events relevant to typical event scenarios are retrieved The baker finished the icing (spreading vs. eating)
- ▶ **The Trigger Question**: What *triggers* the metonymy?
 - ⇒ low thematic fit between the verb and the object event-denoting nouns are better fillers for metonymic verbs
 - √ begin the journey ⇔ × begin the book
- √ ranked (testable) set of interpretations, determined by context

generalized event knowledge: high thematic fit covert events, relevant to typical scenarios

generalized event knowledge: high thematic fit covert events, relevant to typical scenarios

The Source Question: Psycholinguistic evidence

Der Konditor / The baker

das Kind hörte auf, die Glasur aufzutragen und fing mit.. the child finished the icing to spread and started with...

The Source Question: Psycholinguistic evidence

Der Konditor / The baker

das Kind hörte auf, die Glasur aufzutragen und fing mit.. the child finished the icing to spread and started with...

The Source Question: Psycholinguistic evidence

Der Konditor The baker

das Kind hörte auf, die Glasur aufzutragen und fing mit.. the icing to spread and started with...

facilitation effect for the high typicality condition

A computational model of covert event interpretation for the Words-as-Cues Hypothesis:

- ► similarity-based: ranked set of interpretations ⇒ similar verbs, similar expectations
- **compositional**: typical arguments → expectations for covert events
 ⇒ integration of contextual cues
- ▶ thematic-fit based model
 ⇒ the event with the best thematic fit is chosen

```
Konditor aufhören Glasur auftragen essen Kind aufhören Glasur essen auftragen
```

A computational model of covert event interpretation for the Words-as-Cues Hypothesis:

- **similarity-based**: ranked set of interpretations ⇒ similar verbs, similar expectations
- **compositional**: typical arguments → expectations for covert events
 ⇒ integration of contextual cues
- ▶ thematic-fit based model
 ⇒ the event with the best thematic fit is chosen

```
Konditor aufhören Glasur auftragen essen Kind aufhören Glasur essen auftragen
```

A computational model of covert event interpretation for the Words-as-Cues Hypothesis:

- **similarity-based**: ranked set of interpretations ⇒ similar verbs, similar expectations
- compositional: typical arguments → expectations for covert events ⇒ integration of contextual cues
- ▶ thematic-fit based model
 ⇒ the event with the best thematic fit is chosen

```
Konditor aufhören Glasur auftragen essen Kind aufhören Glasur essen auftragen
```

A computational model of covert event interpretation for the Words-as-Cues Hypothesis:

- **similarity-based**: ranked set of interpretations ⇒ similar verbs, similar expectations
- ▶ compositional: typical arguments → expectations for covert events ⇒ integration of contextual cues
- ▶ thematic-fit based model
 ⇒ the event with the best thematic fit is chosen

```
Konditor aufhören Glasur auftragen essen
Kind aufhören Glasur essen auftragen
```

A computational model of covert event interpretation for the Words-as-Cues Hypothesis:

- **similarity-based**: ranked set of interpretations ⇒ similar verbs, similar expectations
- ▶ compositional: typical arguments → expectations for covert events ⇒ integration of contextual cues
- thematic-fit based model
 - ⇒ the event with the best thematic fit is chosen

Konditor	aufhören	Glasur	auftragen	essen
Kind	aufhören	Glasur	essen	auftragen

Distributional Memory (DM) [Baroni and Lenci, 2010]

	⟨verb,bomb⟩	$\langle subj, kill \rangle$	(verb,gun)	$\langle subj, shoot \rangle$	$\langle verb, book \rangle$	⟨subj,read⟩
	40.0	82.1	85.3	44.8	3.2	3.3
teacher	5.2	7.0	9.3	4.7	48.4	53.6

- ► Weighted expectations (**thematic fit**):

 marine \xrightarrow{object} gun, bomb, . . .
- ► English DM [Baroni and Lenci, 2010] and German DM [Padó and Utt, 2012]

Distributional Memory (DM) [Baroni and Lenci, 2010]

	$\langle verb, bomb \rangle$	$\langle subj, kill \rangle$	$\langle verb, gun \rangle$	$\langle subj, shoot \rangle$	⟨verb,book⟩	$\langle \mathit{subj,read} \rangle$
marine	40.0	82.1	85.3	44.8	3.2	3.3
teacher	5.2	7.0	9.3	4.7	48.4	53.6

- ► Weighted expectations (**thematic fit**):

 marine \xrightarrow{object} gun, bomb, . . .
- ► English DM [Baroni and Lenci, 2010] and German DM [Padó and Utt, 2012]

Distributional Memory (DM) [Baroni and Lenci, 2010]

	$\langle verb, bomb \rangle$	$\langle subj, kill \rangle$	$\langle \mathit{verb}, \mathit{gun} \rangle$	$\langle subj, shoot \rangle$	$\langle verb, book \rangle$	$\langle subj, read \rangle$
marine	40.0	82.1	85.3	44.8	3.2	3.3
teacher	5.2	7.0	9.3	4.7	48.4	53.6

- Weighted expectations (thematic fit):
 marine ^{object}/_{pun}, bomb, . . .
- ► English DM [Baroni and Lenci, 2010] and German DM [Padó and Utt, 2012]

Distributional Memory (DM) [Baroni and Lenci, 2010]

	$\langle verb, bomb \rangle$	$\langle subj, kill \rangle$	$\langle verb, gun \rangle$	$\langle subj, shoot \rangle$	⟨verb,book⟩	$\langle subj, read \rangle$
marine	40.0	82.1	85.3	44.8	3.2	3.3
teacher	5.2	7.0	9.3	4.7	48.4	53.6

- Weighted expectations (thematic fit):
 marine ^{object}/_{pun}, bomb, . . .
- ► English DM [Baroni and Lenci, 2010] and German DM [Padó and Utt, 2012]

A compositional model inspired by the ECU model, [Lenci, 2011]:

- ightharpoonup subject's expectations: brewer \xrightarrow{subj} event
- ightharpoonup object's expectations: beer $\stackrel{obj}{\longrightarrow}$ event
- metonymic verb's expectations: $finish \xrightarrow{comp^{-1}} event$

 \Rightarrow composed expectations: $\langle brewer, finish, beer \rangle \xrightarrow{covert} prototype$

Thematic fit of an event: similarity to the prototype

$$\langle brewer, finish, beer \rangle \rightarrow$$

Sim(pr,brew) > Sim(pr,drink)

A compositional model inspired by the ECU model, [Lenci, 2011]:

- ightharpoonup subject's expectations: brewer \xrightarrow{subj} event
- ightharpoonup object's expectations: beer $\stackrel{obj}{\longrightarrow}$ event
- ightharpoonup metonymic verb's expectations: finish $\xrightarrow{comp^{-1}}$ event

⇒ composed expectations: (brewer, finish, beer) covert event prototype

verbs with brewer as subj

Thematic fit of an event: **similarity** to the prototype

 $\langle brewer, finish, beer \rangle \rightarrow$

 $\mathsf{Sim}(\mathsf{pr},\mathsf{brew}) > \mathsf{Sim}(\mathsf{pr},\mathsf{drink})$

A compositional model inspired by the ECU model, [Lenci, 2011]:

- ightharpoonup subject's expectations: brewer \xrightarrow{subj} event
- ightharpoonup object's expectations: beer \xrightarrow{obj} event
- ▶ metonymic verb's expectations: $finish \xrightarrow{comp^{-1}} event$

⇒ composed expectations: (brewer, finish, beer) covert event prototype

Thematic fit of an event: similarity to the prototype

⟨brewer, finish, beer⟩ →

Sim(pr,brew) > Sim(pr,drink)

A **compositional** model inspired by the ECU model, [Lenci, 2011]:

- ightharpoonup subject's expectations: brewer \xrightarrow{subj} event
- ightharpoonup object's expectations: beer \xrightarrow{obj} event
- metonymic verb's expectations: $finish \xrightarrow{comp^{-1}} event$

 \Rightarrow composed expectations: $\langle brewer, finish, beer \rangle \xrightarrow{covert} prototype$

similarity to the prototype

 $\langle brewer, finish, beer \rangle \rightarrow$

Sim(pr,brew) > Sim(pr,drink)

A **compositional** model inspired by the ECU model, [Lenci, 2011]:

- ightharpoonup subject's expectations: brewer \xrightarrow{subj} event
- ightharpoonup object's expectations: beer \xrightarrow{obj} event
- ightharpoonup metonymic verb's expectations: finish $\xrightarrow{comp^{-1}}$ event
 - \Rightarrow composed expectations: $\langle brewer, finish, beer \rangle \xrightarrow{covert event} prototype$

Thematic fit of an event: similarity to the prototype

$$\langle$$
 brewer, finish, beer $\rangle \rightarrow$

A **compositional** model inspired by the ECU model, [Lenci, 2011]:

- ▶ subject's expectations: brewer \xrightarrow{subj} event
- ightharpoonup object's expectations: beer $\stackrel{obj}{\longrightarrow}$ event
- - \Rightarrow composed expectations: $\langle brewer, finish, beer \rangle \xrightarrow{covert \ event} prototype$

Thematic fit of an event: similarity to the prototype

 $\langle brewer, finish, beer \rangle \rightarrow brew, drink$

 $\mathsf{Sim}(\mathsf{pr},\mathsf{brew}) > \mathsf{Sim}(\mathsf{pr},\mathsf{drink})$

A compositional model inspired by the ECU model, [Lenci, 2011]:

- subject's expectations: brewer \xrightarrow{subj} event
- object's expectations: beer \xrightarrow{obj} event
- metonymic verb's expectations: $finish \xrightarrow{comp^{-1}} event$
 - \Rightarrow composed expectations: $\langle brewer, finish, beer \rangle \xrightarrow{covert \ event} prototype$

Thematic fit of an event: similarity to the prototype

 $\langle brewer, finish, beer \rangle \rightarrow \underline{brew}, \underline{drink}$

Sim(pr,brew) > Sim(pr,drink)

Comparison with Probabilistic Models [Lapata et al., 2003]: covert event in a given context maximizes P(s, v, o, e)

	BL				
Accuracy Coverage Backoff Acc.	50% 100% 50%	62% 44% 55%	75%	53% 94% 53%	68% 98% 68%

- ▶ Both classes outperform the baselines (BL)
- ► Similarity-based Models: comparable accuracy to Probabilistic Models while guaranteeing higher coverage
- ► SO models perform better than SOV models: the metonymic verb not very informative

Comparison with Probabilistic Models [Lapata et al., 2003]: covert event in a given context maximizes P(s, v, o, e)

		Probabilistic Models			ity-based odels
	BL	SOV	SO	SOV	SO
Accuracy	50%	62%	75%	53%	68%
Coverage Backoff Acc.	100% 50%	44% 55%	75% 69%	94% 53%	98% 68%

- ▶ Both classes outperform the baselines (BL)
- Similarity-based Models: comparable accuracy to Probabilistic Models while guaranteeing higher coverage
- ▶ SO models perform better than SOV models: the metonymic verb not very informative

Comparison with Probabilistic Models [Lapata et al., 2003]: covert event in a given context maximizes P(s, v, o, e)

		Probabilistic Models			ity-based odels
	BL	SOV	SO	SOV	SO
Accuracy Coverage Backoff Acc.	50% 100% 50%	62% 44% 55%	75% 75% 69%	53% 94% 53%	68% 98% 68%

- ▶ Both classes outperform the baselines (BL)
- Similarity-based Models: comparable accuracy to
 Probabilistic Models while guaranteeing higher coverage
- ▶ SO models perform better than SOV models: the metonymic verb not very informative

Comparison with Probabilistic Models [Lapata et al., 2003]: covert event in a given context maximizes P(s, v, o, e)

		Probabilistic Models			ity-based odels
	BL	SOV	SO	SOV	SO
Accuracy	50%	62%	75%	53%	68%
Coverage Backoff Acc.	100% 50%	44% 55%	75% 69%	94% 53%	98% 68%

- Both classes outperform the baselines (BL)
- Similarity-based Models: comparable accuracy to Probabilistic Models while guaranteeing higher coverage
- ► SO models perform better than SOV models: the metonymic verb not very informative

Comparison with Probabilistic Models [Lapata et al., 2003]: covert event in a given context maximizes P(s, v, o, e)

		Probabilistic Models			ity-based odels
	BL	SOV	SO	SOV	SO
Accuracy	50%	62%	75%	53%	68%
Coverage Backoff Acc.	100% 50%	44% 55%	75% 69%	94% 53%	98% 68%

- Both classes outperform the baselines (BL)
- Similarity-based Models: comparable accuracy to Probabilistic Models while guaranteeing higher coverage
- ► SO models perform better than SOV models: the metonymic verb not very informative

✓ generalized event knowledge: high thematic fit covert events, relevant to typical scenarios

What triggers the metonymy?

⇓

low thematic fit between the verb and the object:

event-denoting nouns are
better fillers for metonymic verbs

√ generalized event knowledge: high thematic fit covert events, relevant to typical scenarios

What triggers the metonymy?

 \Downarrow

low thematic fit between the verb and the object:

event-denoting nouns are
better fillers for metonymic verbs

√ generalized event knowledge: high thematic fit covert events, relevant to typical scenarios

What triggers the metonymy?

low thematic fit between the verb and the object:

event-denoting nouns are
better fillers for metonymic verbs

What is the source of the covert event?

√ generalized event knowledge: high thematic fit covert events, relevant to typical scenarios

What triggers the metonymy?

low thematic fit between the verb and the object:

event-denoting nouns are
better fillers for metonymic verbs

	EV	EN
meton. v.	✓ The boy started the fight	× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	✓ The boy saw the puzzle

- longest reading times for metonymic verb + entity-denoting object
 - type-clash or lower thematic fit?
 - computational model of thematic fit (no explicit type informa

	EV	EN
meton. v.	✓ The boy started the fight	× The boy started the puzzle
non-meton. v.	√ The boy saw the fight	✓ The boy saw the puzzle

- longest reading times for metonymic verb + entity-denoting object
 - type-clash or lower thematic fit?
 - computational model of thematic fit (no explicit type informati

	EV	EN
meton. v.	√ The boy started the fight	× The boy started the puzzle
non-meton. v.	✓ The boy saw the fight	✓ The boy saw the puzzle

- longest reading times for metonymic verb + entity-denoting object
 - type-clash or lower thematic fit?
 - computational model of thematic fit (no explicit type information

	EV	EN
meton. v.	✓ The boy started the fight	× The boy started the puzzle
non-meton. v.	✓ The boy saw the fight	✓ The boy saw the puzzle

- longest reading times for metonymic verb + entity-denoting object
 - type-clash or lower thematic fit?
 - computational model of thematic fit (no explicit type information)

The boy [started / saw] the fight_{EV} / the puzzle_{EN}

Thematic-fit Mode

The boy [started / saw] the fight_{EV} / the puzzle_{EN}

Thematic-fit Mode 0.72 thematic fit 0.68 0.66 0.64 MET non-MET

highest processing costs

[Traxler et al., 2002]

verb type

obj.type

The boy [started / saw] the fight_{EV} / the puzzle_{EN}

Thematic-fit Mode

highest processing costs

[Traxler et al., 2002]

highest (1 - th.fit) scores [Zarcone et al., 2013]

What triggers the metonymy?

low thematic fit between the verb and the object:

event-denoting nouns are
better fillers for metonymic verbs

- metonymic combinations distinguished in terms of thematic fit
- distributional characterization of metonymic verbs in terms of their selectional behavior

[Zarcone et al., 2013, Utt et al., 2013]

What triggers the metonymy?

low thematic fit between the verb and the object:

event-denoting nouns are
better fillers for metonymic verbs

- metonymic combinations distinguished in terms of thematic fit
- distributional characterization of metonymic verbs in terms of their selectional behavior

[Zarcone et al., 2013, Utt et al., 2013]

What triggers the metonymy?

low thematic fit between the verb and the object:

event-denoting nouns are
better fillers for metonymic verbs

- metonymic combinations distinguished in terms of thematic fit
- distributional characterization of metonymic verbs in terms of their selectional behavior

[Zarcone et al., 2013, Utt et al., 2013]

What triggers the metonymy?

low thematic fit between the verb and the object:

event-denoting nouns are
better fillers for metonymic verbs

- metonymic combinations distinguished in terms of thematic fit
- distributional characterization of metonymic verbs in terms of their selectional behavior

[Zarcone et al., 2013, Utt et al., 2013]

What triggers the metonymy?

low thematic fit between the verb and the object:

event-denoting nouns are
better fillers for metonymic verbs

- metonymic combinations distinguished in terms of thematic fit
- distributional characterization of metonymic verbs in terms of their selectional behavior

[Zarcone et al., 2013, Utt et al., 2013]

```
Das Geburtstagskind hat mit den Geschenken / der Suppe / der Feier / der Schicht angefangen.

The birthday boy has with the presents / the soup / the party / the shift begun.
```

```
Das Geburtstagskind hat mit den Geschenken / der Suppe / der Feier / der Schicht angefangen.

The birthday boy has with the presents / the soup / the party / the shift begun.
```

2 EN-denoting objects,2 EV-denoting objects

```
Das Geburtstagskind hat mit den Geschenken / der Suppe / der Feier / der Schicht angefangen.

The birthday boy has with the presents / the soup / the party / the shift begun.
```

2 EN-denoting objects,2 EV-denoting objects

```
Das Geburtstagskind hat mit den Geschenken / der Suppe / der Feier / der Schicht angefangen.

The birthday boy has with the presents / the soup / the party / the shift begun.
```

2 high thematic fit objects (1 EN, 1 EV), 2 low thematic fit objects (1 EN, 1 EV)

```
Das Geburtstagskind hat mit den Geschenken / der Suppe / der Feier / der Schicht angefangen.

The birthday boy has with the presents / the soup / the party / the shift begun.
```

2 high thematic fit objects (1 EN, 1 EV), 2 low thematic fit objects (1 EN, 1 EV)

```
Das Geburtstagskind hat mit den Geschenken / der Suppe / der Feier / der Schicht angefangen.

The birthday boy has with the presents / the soup / the party / the shift begun.
```

```
Prediction from a type account: 

RT<sub>EV,HIGH</sub> < RT<sub>EN,HIGH</sub> 

RT<sub>EV,LOW</sub> < RT<sub>EN,LOW</sub>
```

```
Das Geburtstagskind hat mit den Geschenken / der Suppe / der Feier / der Schicht angefangen.

The birthday boy has with the presents / the soup / the party / the shift begun.
```

```
thematic fit account: RT_{EV,HIGH} < RT_{EV,LOW} RT_{EN,HIGH} < RT_{EN,LOW}
```

Prediction from a

```
Das Geburtstagskind hat mit den Geschenken / der Suppe / der Feier / der Schicht angefangen.

The birthday boy has with the presents / the soup / the party / the shift begun.
```


Results:

 $RT_{EV,HIGH} < RT_{EV,LOW},$ $RT_{EN,HIGH}, RT_{EN,LOW}$

Both type and thematic fit are necessary

```
Das Geburtstagskind hat mit den Geschenken / der Suppe / der Feier / der Schicht angefangen.

The birthday boy has with the presents / the soup / the party / the shift begun.
```


Results:

 $RT_{EV,HIGH} < RT_{EV,LOW},$ $RT_{EN,HIGH}, RT_{EN,LOW}$

Both **type** and **thematic fit** are necessary

What is the source of the covert event?

 \Downarrow

✓ generalized event knowledge: high thematic fit covert events relevant to typical scenarios

What triggers the metonymy?

JL

- × low thematic fit between the verb and the object:
- ✓ type + thematic fit: expectations for high-typicality event-denoting objects

What is the source of the covert event?

 \Downarrow

✓ generalized event knowledge: high thematic fit covert events, relevant to typical scenarios

What triggers the metonymy?

- × low thematic fit between the verb and the object:
- ✓ type + thematic fit: expectations for high-typicality event-denoting objects

What is the source of the covert event?

✓ generalized event knowledge: high thematic fit covert events, relevant to typical scenarios

What triggers the metonymy?

- × low thematic fit between the verb and the object:
- ✓ type + thematic fit: expectations for high-typicality event-denoting objects

What is the source of the covert event?

 \Downarrow

✓ generalized event knowledge: high thematic fit covert events, relevant to typical scenarios

What triggers the metonymy?

IL

- × low thematic fit between the verb and the object:
- ✓ type + thematic fit: expectations for high-typicality event-denoting objects

What is the source of the covert event?

 \Downarrow

✓ generalized event knowledge: high thematic fit covert events, relevant to typical scenarios

What triggers the metonymy?

IL

- × low thematic fit between the verb and the object:
- ✓ type + thematic fit: expectations for high-typicality event-denoting objects

What is the source of the covert event?

 \Downarrow

✓ generalized event knowledge: high thematic fit covert events, relevant to typical scenarios

What triggers the metonymy?

IL

- × low thematic fit between the verb and the object:

Incremental, context-driven and expectation-driven specification process:

- metonymic verbs' selectional properties
 - ightarrow expectations for high-typicality event-denoting objects
- contextual cues
 - → update expectations for high-typicality covert events
- semantic type as yet another constraint contributing to the expectation building process

- semantic type emerging from observed distributional behavior
- selectional preferences as distributions over classes of fillers
- encoding both thematic fit and type

Incremental, context-driven and expectation-driven specification process:

- metonymic verbs' selectional properties
 - → expectations for high-typicality event-denoting objects
- contextual cues
 - → update expectations for high-typicality covert events
- semantic type as yet another constraint contributing to the expectation building process

- semantic type emerging from observed distributional behavior
- selectional preferences as distributions over classes of fillers
- encoding both thematic fit and type

Incremental, context-driven and expectation-driven specification process:

- metonymic verbs' selectional properties
 - ightarrow expectations for high-typicality event-denoting objects
- contextual cues
 - → update expectations for high-typicality covert events
- semantic type as yet another constraint contributing to the expectation building process

- semantic type emerging from observed distributional behavior
- selectional preferences as distributions over classes of fillers
- encoding both thematic fit and type

Incremental, context-driven and expectation-driven specification process:

- metonymic verbs' selectional properties
 - → expectations for high-typicality event-denoting objects
- contextual cues
 - → update expectations for high-typicality covert events
- semantic type as yet another constraint contributing to the expectation building process

- semantic type emerging from observed distributional behavior
- selectional preferences as distributions over classes of fillers
- encoding both thematic fit and type

Incremental, context-driven and expectation-driven specification process:

- metonymic verbs' selectional properties
 - ightarrow expectations for high-typicality event-denoting objects
- contextual cues
 - → update expectations for high-typicality covert events
- semantic type as yet another constraint contributing to the expectation building process

- semantic type emerging from observed distributional behavior
- selectional preferences as distributions over classes of fillers
- encoding both thematic fit and type

Incremental, context-driven and expectation-driven specification process:

- metonymic verbs' selectional properties
 - ightarrow expectations for high-typicality event-denoting objects
- contextual cues
 - → update expectations for high-typicality covert events
- semantic type as yet another constraint contributing to the expectation building process

- semantic type emerging from observed distributional behavior
- selectional preferences as distributions over classes of fillers
- encoding both thematic fit and type

Incremental, context-driven and expectation-driven specification process:

- metonymic verbs' selectional properties
 - ightarrow expectations for high-typicality event-denoting objects
- contextual cues
 - → update expectations for high-typicality covert events
- semantic type as yet another constraint contributing to the expectation building process

- semantic type emerging from observed distributional behavior
- selectional preferences as distributions over classes of fillers
- encoding both thematic fit and type

Incremental, context-driven and expectation-driven specification process:

- metonymic verbs' selectional properties
 - ightarrow expectations for high-typicality event-denoting objects
- contextual cues
 - → update expectations for high-typicality covert events
- semantic type as yet another constraint contributing to the expectation building process

- semantic type emerging from observed distributional behavior
- selectional preferences as distributions over classes of fillers
- encoding both thematic fit and type

Different theories of logical metonymy, different position of **event knowledge** in the cognitive architecture (lexicon vs. world knowledge)

- ⇒ linguistic (lexical) knowledge: systematic, amenable to generalization, a more feasible object of analysis
- world knowledge: situated, culture-dependent, no systematic characterization and analysis

"The most common argument [...] for drawing a strict boundary between lexicon and world knowledge is a kind of despair that a scientific study of world knowledge is possible" [Hobbs. 2009]

Different theories of logical metonymy, different position of **event knowledge** in the cognitive architecture (lexicon vs. world knowledge)

- ⇒ linguistic (lexical) knowledge: systematic, amenable to generalization, a more feasible object of analysis
- world knowledge: situated, culture-dependent, no systematic characterization and analysis

"The most common argument [...] for drawing a strict boundary between lexicon and world knowledge is a kind of despair that a scientific study of world knowledge is possible" [Hobbs, 2009]

Different theories of logical metonymy, different position of **event knowledge** in the cognitive architecture (lexicon vs. world knowledge)

- ⇒ linguistic (lexical) knowledge: systematic, amenable to generalization, a more feasible object of analysis
- ⇒ world knowledge: situated, culture-dependent, no systematic characterization and analysis

"The most common argument [...] for drawing a strict boundary between lexicon and world knowledge is a kind of despair that a scientific study of world knowledge is possible" [Hobbs, 2009]

Different theories of logical metonymy, different position of **event knowledge** in the cognitive architecture (lexicon vs. world knowledge)

- ⇒ linguistic (lexical) knowledge: systematic, amenable to generalization, a more feasible object of analysis
- ⇒ world knowledge: situated, culture-dependent, no systematic characterization and analysis

"The most common argument [...] for drawing a strict boundary between lexicon and world knowledge is a kind of despair that a scientific study of world knowledge is possible" [Hobbs, 2009]

- ▶ it is possible to make predictions and verify hypotheses regarding the role of world knowledge in linguistic processing
- evidence for early use of rich knowledge about typical events and their participants
 - ⇒ during processing of explicit inpu
 - ⇒ in covert event interpretation

- ▶ it is possible to make predictions and verify hypotheses regarding the role of world knowledge in linguistic processing
- evidence for early use of rich knowledge about typical events and their participants
 - ⇒ during processing of explicit input
 - ⇒ in covert event interpretation

- ▶ it is possible to make predictions and verify hypotheses regarding the role of world knowledge in linguistic processing
- evidence for early use of rich knowledge about typical events and their participants
 - ⇒ during processing of explicit input
 - in covert event interpretation

- ▶ it is possible to make predictions and verify hypotheses regarding the role of world knowledge in linguistic processing
- evidence for early use of rich knowledge about typical events and their participants
 - ⇒ during processing of explicit input
 - ⇒ in covert event interpretation

ogical metonymy and covert events.
The Source Question
The Trigger Questions

Thank you!

The research presented was funded by the German Research Foundation (DFG) as part of the SFB 732 - project D6

Cooperation with Alessandro Lenci and Jason Utt