Inducing Script Structure from Crowdsourced Event Descriptions via Semi-Supervised Clustering


We present a semi-supervised clustering approach to induce script structure from crowdsourced descriptions of event sequences by grouping event descriptions into paraphrase sets (representing event types) and inducing their temporal order. Our approach exploits semantic and positional similarity and allows for flexible event order, thus overcoming the rigidity of previous approaches. We incorporate crowdsourced alignments as prior knowledge and show that exploiting a small number of alignments results in a substantial improvement in cluster quality over state-of-the-art models and provides an appropriate basis for the induction of temporal order. We also show a coverage study to demonstrate the scalability of our approach.

Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics
Alessandra Zarcone
Alessandra Zarcone
Professor of Language Technologies and Cognitive Assistants

Computational linguist with a background in NLP and in psycholinguistics, working on AI, NLP and human-machine interaction.