
Exp 2: out-of-domain (VA: PATE-test)

• SOTA models perform worse out of domain (value F1 = 39)
• Even without fine-tuning, DA-Time (value F1 = 49) profits from

• domain-specific normalizer
• simplified news training set

• Looking at different amounts of fine-tuning data
• improvements using Snips

(after using 30% value F1 = 61)
• best when fine-tuning on PATE-train

(after using 10%, value F1 = 58, mostly for TIME)

DA-Time - a hybrid temporal tagger for the VA domain 
• neural TE recognizer (type + unit classification): DistilBERT embeddings + BiLSTM + CRF
• rule-based TE normalizer: based on recognizer output (type, unit) and dependency parses
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Scarcity of data for VA: Can we adopt a transfer learning approach?
How much data is necessary until performance flattens out? 
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Tagging temporal expressions (TEs)
• identification and classification of TEs into types (TE recognition)

and their conversion into a machine-readable value (TE normalization)
• typical tagset: TimeML/TIMEX3 (Pustejovsky et al. 2003)
• existing work considers news, social media, narrative or clinical domains, 

but TEs are crucial for the Voice Assistant (VA) domain
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News Datasets VA Datasets

TE-3 (TBAQ+Silver, 800k tokens), 
TE-3 Simplified (290k), TE-3 Platinum (7k)

Snips (9,6k), 
PATE (5,6K)

• long, grammatical sentences
• reference to past events
• references between events

• short, concise, elliptical queries
• reference to future events
• fewer references between events

TE recognizer available for academic use: https://github.com/audiolabs/DA-Time/ 

• Major improvements with only 10% of the VA data (in particular Value F1)
• Unit + type for efficient domain-specific normalization
• DA-Time as a baseline model for further neural-based research in the VA domain

Transfer Learning (based on Felbo et al. 2017): 
fine-tuning each layer sequentially (except embedding layer), 
freezing the other

Model Extent Type Value

HeidelTime 90.7 83.3 78.1

UW-Time 91.4 85.4 82.4

DA-Time 90 81.1 71.3

Exp 1: in-domain (news: TE-3 Platinum)
• Extent comparable to other models
• Type and value worse
• DA-Time penalized (simplified training set)
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Conclusions & Future Work


