New Domain, Major Effort?

How Much Data is Necessary to Adapt a Temporal Tagger to the Voice Assistant Domain
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Tagging temporal expressions (TEs)

* identification and classification of TEs into types (TE recognition)
and their conversion into a machine-readable value (TE normalization)

* typical tagset: TimeML/TIMEX3 (Pustejovsky et al. 2003)

» existing work considers news, social media, narrative or clinical domains,
but TEs are crucial for the Voice Assistant (VA) domain
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Scarcity of data for VA: Can we adopt a transfer learning approach?
How much data is necessary until performance flattens out?

News Datasets “ VA Datasets
TE-3 (TBAQ+Silver, 800k tokens), Snips (9,6k),
TE-3 Simplified (290k), TE-3 Platinum (7k) PATE (5,6K)
* long, grammatical sentences * short, concise, elliptical queries
* reference to past events * reference to future events
* references between events » fewer references between events

News |
VA

0% 20% 40% 60% 80% 100%
m DATE mTIME m DURATION m SET

DA-Time - a hybrid temporal tagger for the VA domain
* neural TE recognizer (type + unit classification): DistilBERT embeddings + BiLSTM + CRF
* rule-based TE normalizer: based on recognizer output (type, unit) and dependency parses

Exp 1: in-domain (news: TE-3 Platinum)  Model  Extent Type Value
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Extent comparable to other models HeidelTime 90.7 83.3 78.1

. . . e . UW-Time 914 854 824
DA-Time penalized (simplified training set)
DA-Time 90 81.1 713

DA-Time (PATE) Exp 2: out-of-domain (VA: PATE-test)
DA-Time (Snips)

DA-Time, no fine-tuning
= HeidelTime, UW-Time

Transfer Learning (based on Felbo et al. 2017):
fine-tuning each layer sequentially (except embedding layer),
freezing the other

* SOTA models perform worse out of domain (value F1 = 39)
* Even without fine-tuning, DA-Time (value F1 = 49) profits from
* domain-specific normalizer
* simplified news training set
* Looking at different amounts of fine-tuning data
* improvements using Snips
(after using 30% value F1 = 61)
* best when fine-tuning on PATE-train
(after using 10%, value F1 = 58, mostly for TIME)
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Conclusions & Future Work

* Major improvements with only 10% of the VA data (in particular Value F1)
* Unit + type for efficient domain-specific normalization
* DA-Time as a baseline model for further neural-based research in the VA domain

TE recognizer available for academic use: https://github.com/audiolabs/DA-Time/



